Challenges for Copyright by ICT: Introduction Traditional copyright and the practice of paying Yet again new technologies have altered the way of how (copyrighted) works are produced, copied, made obtainable and distributed. The emergence of global electronic networks and the increased availability of digitalized intellectual property confront existing copyright with a variety of questions and challenges. Although the combination of several types of works within one larger work or on one data carrier, and the digital format (although this may be a recent development it has been the object of detailed legal scrutiny), as well as networking (telephone and cable networks have been in use for a long time, although they do not permit interactivity) are nothing really new, the circumstance that recent technologies allow the presentation and storage of text, sound and visual information in digital form indeed is a novel fact. Like that the entire information can be generated, altered and used by and on one and the same device, irrespective of whether it is provided online or offline. |
|
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights) Another important multilateral treaty concerned with The complete TRIPS agreement can be found on: |
|
Digital Subscriber Line (DSL) DSL connections are high-speed data connections over copper wire telephone lines. As with cable connections, with DSL you can look up information on the Internet and make a phone call at the same time but you do not need to have a new or additional cable or line installed. One of the most prominent DSL services is ISDN (integrated services digital network, for more information click here ( |
|
Gutenberg's printing press, 1455 Gutenberg's printing press, an innovative aggregation of inventions known for centuries before Gutenberg: the olive oil press, oil-based ink, block-print technology, and movable types, allowed the mass production of the movable type used to reproduce a page of text and increased the production rate enormously. During the Middle Ages monks took at least a year over making a handwriting copy of a book. Gutenberg printed about 300 sheets per day. Because parchment was too costly for mass production - often for the production of one copy of a medieval book a whole flock of sheep was used - it was substituted by cheap paper made from recycled clothing left over from the massive number of dead caused by the Great Plague. Within forty-five years, in 1500, already ten million copies were available for a few hundred thousand literate. Because individuals could examine a range of opinions now, the printed Bible, especially after having been translated into German by Martin Luther, and increasing literacy added to the subversion of clerical authorities. The interest in books increased with the rise of vernacular, non-Latin literary texts, beginning with Dante's Divine Comedy, the first literary text written in Italian. Among others, the improvement of the distribution and the production of books and increased literacy made the development of print mass media possible. Michael Giesecke (Sinnenwandel Sprachwandel Kulturwandel. Studien zur Vorgeschichte der Informationsgesellschaft, Frankfurt am Main: Suhrkamp, 1992) has shown that due to a division of labor among authors, printers and typesetters Gutenberg's invention increasingly led to a standardization of - written and unwritten - language in form of orthography, grammar and signs. To communicate one's ideas became linked to the use of a kind of code, and reading became a kind of rite of passage, in every human's life an important step towards independency. With the increasing linkage of knowledge to wide reading and learnedness, the history of knowledge becomes the history of readings, of readings dependent on chance and on circumstance. For further details see: Martin Warnke, Text und Technik, Bruce Jones, Manuscripts, Books, and Maps: The Printing Press and a Changing World, |
|
RSA The best known of the two-key cryptosystems developed in the mid-1980s is the Rivest-Shamir-Adleman (RSA) cryptoalgorithm, which was first published in April, 1977. Since that time, the algorithm has been employed in the most widely-used Internet electronic communications encryption program, |
|