Digital Signatures, Timestamps etc

Most computer systems are far from being secure.
A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data.
It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector.

Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions.

If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool.

In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too.

A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged.

For more terms of cryptography and more information see:
http://poseidon.csd.auth.gr/signatures
http://www.dlib.org/dlib/december97/ibm/12lotspiech.html
http://www.cryptography.com/technology/technology.html
http://www.cdt.org/crypto/glossary.shtml
http://www.oecd.org//dsti/sti/it/secur/prod/GD97-204.htm

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611776/100438659015
 
Basics: Protected Works

Usually the subject matter of copyright is described as "literary and artistic works" - original creations in the fields of literature and arts. Such works may be expressed in words, symbols, pictures, music, three-dimensional objects, or combinations thereof. Practically all national copyright laws provide for the protection of the following types of works:

Literary works: novels, poems dramatic works and any other writings, whether published or unpublished; in most countries also computer programs and "oral works"

Musical works

Artistic works: whether two-dimensional or three-dimensional; irrespective of their content and destination

Maps and technical drawings

Photographic works: irrespective of the subject matter and the purpose for which made

Audiovisual works: irrespective of their purpose, genre, length, method employed or technical process used

Some copyright laws also provide for the protection of choreographic works, derivative works (translations, adaptions), collections (compilations) of works and mere data (data bases); collections where they, by reason of the selection and arrangement of the contents, constitute intellectual creations. Furthermore in some countries also "works of applied art" (furniture, wallpaper etc.) and computer programs (either as literary works or independently) constitute copyrightable matter.

Under certain national legislations the notion "copyright" has a wider meaning than "author's rights" and, in addition to literary and artistic works, also extends to the producers of sound recordings, the broadcasters of broadcasts and the creators of distinctive typographical arrangements of publications.


TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659538
 
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights)

Another important multilateral treaty concerned with intellectual property rights is the TRIPS agreement, which was devised at the inauguration of the Uruguay Round negotiations of the WTO in January 1995. It sets minimum standards for the national protection of intellectual property rights and procedures as well as remedies for their enforcement (enforcement measures include the potential for trade sanctions against non-complying WTO members). The TRIPS agreement has been widely criticized for its stipulation that biological organisms be subject to intellectual property protection. In 1999, 44 nations considered it appropriate to treat plant varieties as intellectual property.

The complete TRIPS agreement can be found on: http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659758
 
Roman smoke telegraph network, 150 A.D.

The Roman smoke signals network consisted of towers within visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling.

For a similar telegraph network in ancient Greece see Aeneas Tacitus' optical communication system.

INDEXCARD, 1/3
 
Artificial Intelligence

Artificial Intelligence is concerned with the simulation of human thinking and emotions in information technology. AI develops "intelligent systems" capable, for example, of learning and logical deduction. AI systems are used for creatively handling large amounts of data (as in data mining), as well as in natural speech processing and image recognition. AI is also used as to support decision taking in highly complex environments.
Yahoo AI sites: http://dir.yahoo.com/Science/Computer_Science/Artificial_Intelligence/
MIT AI lab: http://www.ai.mit.edu/


http://dir.yahoo.com/Science/Computer_Science...
http://www.ai.mit.edu/
INDEXCARD, 2/3
 
PGP

A cryptographic software application that was developed by Phil Zimmerman at the Massachusetts Institute of Technology. Pretty Good Privacy (PGP) is a cryptographic product family that enables people to securely exchange messages, and to secure files, disk volumes and network connections with both privacy and strong authentication.

INDEXCARD, 3/3