|
Atrocity Stories Atrocity stories are nothing else than lies; the two words "atrocity stories" simply pretend to be more diplomatic. The purpose is to destroy an image of the enemy, to create a new one, mostly a bad one. The story creating the image is not necessarily made up completely. It can also be a changed into a certain variable direction. The most important thing about atrocity stories is to follow the line of possibility. Even if the whole story is made up it must be probable or at least possible, following rumors. Most successful might it be if a rumor is spread on purpose, some time before the atrocity story is launched, because as soon as something seems to be familiar, it is easier to believe it. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Global hubs of the data body industry While most data bunkers are restricted to particular areas or contexts, there are others which act as global data nodes. Companies such as
The size of these data repositories is constantly growing, so it is only a matter of time when everybody living in the technologically saturated part of the world will be registered in one of these data bunkers. Among these companies, For many years, EDS has been surrounded by rumours concerning sinister involvement with intelligence agencies. Beyond the rumours, though, there are also facts. EDS has a special division for | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Private data bunkers On the other hand are the data bunkers of the private sector, whose position is different. Although these are fast-growing engines of data collection with a much greater degree of dynamism, they may not have the same privileged position - although one has to differentiate among the general historical and social conditions into which a data bunker is embedded. For example, it can safely be assumed that the databases of a large credit card company or bank are more protected than the bureaucracies of small developing countries. Private data bunkers include
Credit bureaus Credit card companies Direct marketing companies Insurance companies Telecom service providers Mail order stores Online stores | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Definition During the last 20 years the old "Digital divide" describes the fact that the world can be divided into people who do and people who do not have access to (or the education to handle with) modern information technologies, e.g. cellular telephone, television, Internet. This digital divide is concerning people all over the world, but as usually most of all people in the formerly so called third world countries and in rural areas suffer; the poor and less-educated suffer from that divide. More than 80% of all computers with access to the Internet are situated in larger cities. "The cost of the information today consists not so much of the creation of content, which should be the real value, but of the storage and efficient delivery of information, that is in essence the cost of paper, printing, transporting, warehousing and other physical distribution means, plus the cost of the personnel manpower needed to run these `extra' services ....Realizing an autonomous distributed networked society, which is the real essence of the Internet, will be the most critical issue for the success of the information and communication revolution of the coming century of millennium." (Izumi Aizi) for more information see: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
History: "Indigenous Tradition" In preliterate societies the association of rhythmic or repetitively patterned utterances with supernatural knowledge endures well into historic times. Knowledge is passed from one generation to another. Similar as in the Southern tradition | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Global data bodies - intro - Education files, insurance files, tax files, communication files, consumption files, medical files, travel files, criminal files, investment files, files into infinity ... Critical Art Ensemble Global data bodies 1. Introduction Informatisation has meant that things that once were "real", i.e. whose existence could be experienced sensually, are becoming virtual. Instead of the real existence of a thing, the virtual refers to its possibility of existence. As this process advances, an increasing identification of the possible with the real occurs. Reality migrates into a dim and dematerialised grey area. In the end, the possible counts for the real, virtualisation creates an "as-if" experience. The experience of the body is also affected by this process. For example, in bio-technology, the human body and its functions are digitised, which prepares and understanding of the body exlusively in terms of its potential manipulation, the body becomes whatever it could be. But digitisation has not only affected the understanding and the social significance of the body, it has also altered the meaning of presence, traditionally identified with the body. The advance of information and communication technologies (ICTs) has meant that for an increasing number of activities we no longer need be physically present, our "virtual" presence, achieved by logging onto a electronic information network, is sufficient. This development, trumpeted as the pinnacle of convenience by the ICT industries and governments interested in attracting investment, has deeply problematic aspects as well. For example, when it is no longer "necessary" to be physically present, it may soon no longer be possible or allowed. Online-banking, offered to customers as a convenience, is also serves as a justification for charging higher fees from those unwilling or unable to add banking to their household chores. Online public administration may be expected to lead to similar effects. The reason for this is that the digitalisation of the economy relies on the production of surplus data. Data has become the most important raw material of modern economies. In modern economies, informatisation and virtualisation mean that people are structurally forced to carry out their business and life their lives in such a way as to generate data. Data are the most important resource for the New Economy. By contrast, activities which do not leave behind a trace of data, as for example growing your own carrots or paying cash rather than by plastic card, are discouraged and structurally suppressed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Biometrics applications: gate keeping Identity has to do with "place". In less mobile societies, the place where a person finds him/herself tells us something about his/her identity. In pre-industrial times, gatekeepers had the function to control access of people to particular places, i.e. the gatekeepers function was to identify people and then decide whether somebody's identity would allow that person to physically occupy another place - a town, a building, a vehicle, etc. In modern societies, the unambiguous nature of place has been weakened. There is a great amount of physical mobility, and ever since the emergence and spread of electronic communication technologies there has been a "virtualisation" of places in what today we call "virtual space" (unlike place, space has been a virtual reality from the beginning, a mathematical formula) The question as to who one is no longer coupled to the physical abode. Highly mobile and virtualised social contexts require a new generation of gatekeepers which biometric technology aims to provide. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Biometric applications: surveillance Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals. Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily. Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Intellectual Property: A Definition Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) Industrial Property a) b) c) d) Unfair competition (trade secrets) e) Geographical indications (indications of source and appellations of origin) 2) Copyright The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Virtual body and data body The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world. But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Feeding the data body | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
1500 - 1700 A.D. 1588 Agostino Ramelli designed a "reading wheel", which allowed browsing through a large number of documents without moving from one spot to another. The device presented a large number of books - a small library - laid open on lecterns on a kind of ferry-wheel. It allowed skipping chapters and browsing through pages by turning the wheel to bring lectern after lectern before the eyes. Ramelli's reading wheel thus linked ideas and texts and reminds of today's browsing software used to navigate the 1597 The first newspaper is printed in Europe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Other biometric technologies Other biometric technologies not specified here include ear recognition, signature dynamics, key stroke dynamics, vein pattern recognition, retinal scan, body odour recognition, and DNA recognition. These are technologies which are either in early stages of development or used in highly specialised and limited contexts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
The Piracy "Industry" Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent Lately the Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Legal Protection: National Legislation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Economic structure; transparent customers Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people. User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying. "Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent." (David Sobel, Electronic Privacy Information Center) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Acessing the Internet The Net connections can be based on wire-line and wireless access technolgies.
Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables Satellite communication Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks. Privatization of satellite communication Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Scheduled privatization of intergovernmental satellite consortia:
When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers. As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost. Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years. Major satellite communication projects
Source: Analysys Satellite Communications Database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Timeline 1900-1970 AD 1913 the wheel cipher gets re-invented as a strip 1917 - an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys 1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin - Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected 1919 Hugo Alexander Koch invents a rotor cipher machine 1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded 1923 Arthur Scherbius founds an enterprise to construct and finally sell his late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly 1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts 1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939 1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of 1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett - at the same time the British develop the Typex machine, similar to the German Enigma machine 1943 Colossus, a code breaking computer is put into action at Bletchley Park 1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type 1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems 1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ) late 1960's the IBM Watson Research Lab develops the Lucifer cipher 1969 James Ellis develops a system of separate public-keys and private-keys | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Individualized Audience Targeting New opportunities for online advertisers arise with the possibility of one-to-one Web applications. Software agents for example promise to "register, recognize and manage end-user profiles; create personalized communities on-line; deliver personalized content to end-users and serve highly targeted advertisements". The probably ultimate tool for advertisers. Although not yet widely used, companies like | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Databody convergence In the phrase "the rise of the citizen as a consumer", to be found on the When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors. There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions. Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control. The world's largest data corporation, Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means. However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Challenges for Copyright by ICT: Copyright Owners The main concern of copyright owners as the (in terms of Reproduction and Distribution Unlike copies of works made using analog copiers (photocopy machines, video recorders etc.) digital information can be reproduced extremely fast, at low cost and without any loss in quality. Since each copy is a perfect copy, no quality-related limits inhibit pirates from making as many copies as they please, and recipients of these copies have no incentive to return to authorized sources to get another qualitatively equal product. Additionally the costs of making one extra copy of intellectual property online are insignificant, as are the distribution costs if the copy is moved to the end user over the Internet. Control and Manipulation In cross-border, global data networks it is almost impossible to control the exploitation of protected works. Particularly the use of anonymous remailers and other existing technologies complicates the persecution of pirates. Also digital files are especially vulnerable to manipulation, of the work itself, and of the (in some cases) therein-embedded | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Challenges for Copyright by ICT: Internet Service Providers ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning Caching Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated. Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts). Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the Information Residing on Systems or Networks at the Direction of Users ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances. Transitory Communication In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions. For more information on copyright ( Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Teran, G.: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Bandwidth The bandwidth of a transmitted communications signal is a measure of the range of frequencies the signal occupies. The term is also used in reference to the frequency-response characteristics of a communications receiving system. All transmitted signals, whether analog or digital, have a certain bandwidth. The same is true of receiving systems. Generally speaking, bandwidth is directly proportional to the amount of data transmitted or received per unit time. In a qualitative sense, bandwidth is proportional to the complexity of the data for a given level of system performance. For example, it takes more bandwidth to download a photograph in one second than it takes to download a page of text in one second. Large sound files, computer programs, and animated videos require still more bandwidth for acceptable system performance. Virtual reality (VR) and full-length three-dimensional audio/visual presentations require the most bandwidth of all. In digital systems, bandwidth is data speed in bits per second (bps). Source: Whatis.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Digital Subscriber Line (DSL) DSL connections are high-speed data connections over copper wire telephone lines. As with cable connections, with DSL you can look up information on the Internet and make a phone call at the same time but you do not need to have a new or additional cable or line installed. One of the most prominent DSL services is ISDN (integrated services digital network, for more information click here ( | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
VISA Visa International's over 21,000 member financial institutions have made VISA one of the world's leading full-service payment network. Visa's products and services include Visa Classic card, Visa Gold card, Visa debit cards, Visa commercial cards and the Visa Global ATM Network. VISA operates in 300 countries and territories and also provides a large consumer payments processing system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Internet Societal Task Force The Internet Societal Task Force is an organization under the umbrella of the Internet Society dedicated to assure that the Internet is for everyone by identifying and characterizing social and economic issues associated with the growth and use of Internet. It supplements the technical tasks of the Topics under discussion are social, economic, regulatory, physical barriers to the use of the Net, privacy, interdependencies of Internet penetration rates and economic conditions, regulation and taxation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Disney American corporation that became the best-known purveyor of child and adult entertainment in the 20th century. Its headquarters are in Burbank, Calif. The company was founded in 1929 and produced animated motion-picture cartoons. In 1955 the company opened the Disneyland amusement park, one of the world's most famous. Under a new management, in the 1980s, Disney's motion-picture and animated-film production units became among the most successful in the United States. In 1996 the Disney corporation acquired Capital Cities/ABC Inc., which owned the ABC television network. The Disney Company also operates the Disney Channel, a pay television programming service. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Automation Automation is concerned with the application of machines to tasks once performed by humans or, increasingly, to tasks that would otherwise be impossible. Although the term mechanization is often used to refer to the simple replacement of human labor by machines, | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
The World Wide Web History Project The ongoing World Wide Web History Project was established to record and publish the history of the World Wide Web and its roots in hypermedia and networking. As primary research methods are used archival research and the analysis of interviews and talks with pioneers of the http://www.webhistory.org/home.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
International Cable Protection Committee (ICPC) The ICPC aims at reducing the number of incidents of damages to submarine telecommunications cables by hazards. The Committee also serves as a forum for the exchange of technical and legal information pertaining to submarine cable protection methods and programs and funds projects and programs, which are beneficial for the protection of submarine cables. Membership is restricted to authorities (governmental administrations or commercial companies) owning or operating submarine telecommunications cables. As of May 1999, 67 members representing 38 nations were members. http://www.iscpc.org | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
François Duvalier b. April 14, 1907, Port-au-Prince, Haiti d. April 21, 1971, Port-au-Prince By name PAPA DOC, president of Haiti whose 14-year regime was of unprecedented duration in that country. A supporter of President Dumarsais Estimé, Duvalier was appointed director general of the National Public Health Service in 1946. He was appointed underminister of labour in 1948 and the following year became minister of public health and labour, a post that he retained until May 10, 1950, when President Estimé was overthrown by a military junta under Paul E. Magloire, who was subsequently elected president. By 1954 he had become the central opposition figure and went underground. Duvalier was elected president in September 1957. Setting about to consolidate his power, he reduced the size of the army and organized the Tontons Macoutes ("Bogeymen"), a private force responsible for terrorizing and assassinating alleged foes of the regime. Late in 1963 Duvalier moved further toward an absolutist regime, promoting a cult of his person as the semi divine embodiment of the Haitian nation. In April 1964 he was declared president for life. Although diplomatically almost completely isolated, excommunicated by the Vatican until 1966 for harassing the clergy, and threatened by conspiracies against him, Duvalier was able to stay in power longer than any of his predecessors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Server A server is program, not a computer, as it sometimes said, dedicated to store files, manage printers and network traffic, or process database queries. Web sites, the nodes of the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Proxy Servers A proxy server is a server that acts as an intermediary between a workstation user and the Internet so that security, administrative control, and caching service can be ensured. A proxy server receives a request for an Internet service (such as a Web page request) from a user. If it passes filtering requirements, the proxy server, assuming it is also a cache server, looks in its local cache of previously downloaded Web pages. If it finds the page, it returns it to the user without needing to forward the request to the Internet. If the page is not in the cache, the proxy server, acting as a client on behalf of the user, uses one of its own Source: Whatis.com | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Operating system An operating system is software that controls the many different operations of a computer and directs and coordinates its processing of programs. It is a remarkably complex set of instructions that schedules the series of jobs (user applications) to be performed by the computer and allocates them to the computer's various hardware systems, such as the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Agostino Ramelli's reading wheel, 1588 Agostino Ramelli designed a "reading wheel" which allowed browsing through a large number of documents without moving from one spot. Presenting a large number of books, a small library, laid open on lecterns on a kind of ferry-wheel, allowing us to skip chapters and to browse through pages by turning the wheel to bring lectern after lectern before our eyes, thus linking ideas and texts together, Ramelli's reading wheel reminds of today's browsing software used to navigate the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Liability of ISPs ISPs (Internet Service Provider), BBSs (Bulletin Board Service Operators), systems operators and other service providers (in the U.S.) can usually be hold liable for infringing activities that take place through their facilities under three theories: 1) direct liability: to establish direct infringement liability there must be some kind of a direct volitional act, 2) contributory liability: a party may be liable for contributory infringement where "... with knowledge of the infringing activity, [it] induces, causes or materially contributes to the infringing activity of another." Therefore a person must know or have reason to know that the subject matter is copyrighted and that particular uses violated copyright law. There must be a direct infringement of which the contributory infringer has knowledge, and encourages or facilitates for contributory infringement to attach, and 3) vicarious liability: a party may be vicariously liable for the infringing acts of another if it a) has the right and ability to control the infringer's acts and b) receives a direct financial benefit from the infringement. Unlike contributory infringement, knowledge is not an element of vicarious liability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Montage Certain elements of two or more photographs can be put together, mixed, and the outcome is a new picture. Like this, people can appear in the same picture, even "sit at the same table" though they have never met in reality. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
IIPA The International | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Sperry Formerly (1955 - 1979) Sperry Rand Corporation, American corporation that merged with the Burroughs Corporation in 1986 to form Unisys Corporation, a large computer manufacturer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Punch card, 1801 Invented by Joseph Marie Jacquard, an engineer and architect in Lyon, France, the punch cards laid the ground for automatic information processing. For the first time information was stored in binary format on perforated cardboard cards. In 1890 Hermann Hollerith used Joseph-Marie Jacquard's punch card technology for processing statistical data retrieved from the US census in 1890, thus speeding up data analysis from eight to three years. His application of Jacquard's invention was also used for programming computers and data processing until electronic data processing was introduced in the 1960's. - As with Paper tapes are a medium similar to Jacquard's punch cards. In 1857 Sir Charles Wheatstone applied them as a medium for the preparation, storage, and transmission of data for the first time. By their means, telegraph messages could be prepared off-line, sent ten times quicker (up to 400 words per minute), and stored. Later similar paper tapes were used for programming computers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
ARPAnet ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute. But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972. Before it was decommissioned in 1990, In the USA commercial users already outnumbered military and academic users in 1994. Despite the rapid growth of the Net, most computers linked to it are still located in the United States. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
User tracking User tracking is a generic term that covers all the techniques of monitoring the movements of a user on a web site. User tracking has become an essential component in online commerce, where no personal contact to customers is established, leaving companies with the predicament of not knowing who they are talking to. Some companies, such as Whenever user tracking is performed without the explicit agreement of the user, or without laying open which data are collected and what is done with them, considerable | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Writing Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets are used for administrative purposes. As an instrument for the administrative bodies of early empires, who began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to a few. Being more or less separated tasks, writing and calculating converge in today's computers. Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Telephone The telephone was not invented by Alexander Graham Bell, as is widely held to be true, but by Philipp Reiss, a German teacher. When he demonstrated his invention to important German professors in 1861, it was not enthusiastically greeted. Because of this dismissal, no financial support for further development was provided to him. And here Bell comes in: In 1876 he successfully filed a patent for the telephone. Soon afterwards he established the first telephone company. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
FEED | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Amazon.com Among privacy campaigners, the company's name has become almost synonymous with aggressive online direct marketing practices as well as user profiling and tracking. Amazon and has been involved in | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Galileo Galilee Galileo Galilee (1564-1642), the Italian Mathematician and Physicist is called the father of Enlightenment. He proofed the laws of the free fall, improved the technique for the telescope and so on. Galilee is still famous for his fights against the Catholic Church. He published his writings in Italian instead of writing in Latin. Like this, everybody could understand him, which made him popular. As he did not stop talking about the world as a ball (the Heliocentric World System) instead of a disk, the Inquisition put him on trial twice and forbid him to go on working on his experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Cooperative Association of Internet Data Analysis (CAIDA) Based at the University of California's San Diego Supercomputer Center, CAIDA supports cooperative efforts among the commercial, government and research communities aimed at promoting a scalable, robust Internet infrastructure. It is sponsored by the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Ron Rivest Ronald L. Rivest is Webster Professor of Electrical Engineering and Computer Science in MIT's EECS Department. He was one of three persons in a team to invent the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Neighboring rights Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Terrestrial antennas Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks. The implementation of the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Technological measures As laid down in the proposed EU Directive on copyright and related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Internet Research Task Force Being itself under the umbrella of the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Optical communication system by Aeneas Tacitus, 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Artificial Intelligence Artificial Intelligence is concerned with the simulation of human thinking and emotions in information technology. AI develops "intelligent systems" capable, for example, of learning and logical deduction. AI systems are used for creatively handling large amounts of data (as in data mining), as well as in natural speech processing and image recognition. AI is also used as to support Yahoo AI sites: MIT AI lab: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
National Laboratory for Applied Network Research NLANR, initially a collaboration among supercomputer sites supported by the Today NLANR offers support and services to institutions that are qualified to use high performance network service providers - such as Internet 2 and http://www.nlanr.net | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Mark A mark (trademark or service mark) is "... a sign, or a combination of signs, capable of distinguishing the goods or services of one undertaking from those of other undertakings. The sign may particularly consist of one or more distinctive words, letters, numbers, drawings or pictures, emblems, colors or combinations of colors, or may be three-dimensional..." ( | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||