The 18th Century: Powered Machines and the Industrial Revolution

The invention of the steam engine by James Watt in 1776 represented a major advance in the development of powered machines. It was first applied to an industrial operation - the spinning of cotton - in 1785. A new kind of work-slave it not only marked the beginning of the Industrial Revolution, but also the coming age of mass production.

In the England of the 18th century five important inventions in the textile industry advanced the automation of work processes. 1) John Kay's flying shuttle in 1733 , which permitted the weaving of larger widths of cloth and significantly increased weaving speed, 2) Edmund Cartwright's power loom in 1785, which increased weaving speed still further, 3) James Hargreaves' spinning jenny in 1764, 4) Richard Arkwright's water frame and 5) Samuel Crompton's spinning mule in 1779, whereby the last three inventions improved the speed and quality of thread-spinning operations. Those developments, combined with the invention of the steam engine, in short time led to the creation of new machine-slaves and the mechanization of the production of most major goods, such as iron, paper, leather, glass and bricks.

Large-scale machine production was soon applied in many manufacturing sectors and resulted in a reduction of production costs. Yet the widespread use of the novel work-slaves also led to new demands concerning the work force's qualifications. The utilization of machines enabled a differentiated kind of division of labor and eventuated in a (further) specialization of skills. While before many goods were produced by skilled craftsmen the use of modern machinery increased the demand for semiskilled and unskilled workers. Also, the nature of the work process altered from one mainly dependent on physical power to one primarily dominated by technology and an increasing proportion of the labor force employed to operate machines.

TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611663/100438659368
 
Linking and Framing: Cases

Mormon Church v. Sandra and Jerald Tanner

In a ruling of December 1999, a federal judge in Utah temporarily barred two critics of the Mormon Church from posting on their website the Internet addresses of other sites featuring pirated copies of a Mormon text. The Judge said that it was likely that Sandra and Jerald Tanner had engaged in contributory copyright infringement when they posted the addresses of three Web sites that they knew, or should have known, contained the copies.

Kaplan, Carl S.: Copyright Decision Threatens Freedom to Link. In: New York Times. December 10, 1999.

Universal Studios v. Movie-List

The website Movie-List, which features links to online, externally hosted movie trailers has been asked to completely refrain from linking to any of Universal Studio's servers containing the trailers as this would infringe copyright.

Cisneros, Oscar S.: Universal: Don't Link to Us. In: Wired. July 27, 1999.

More cases concerned with the issue of linking, framing and the infringement of intellectual property are published in:

Ross, Alexandra: Copyright Law and the Internet: Selected Statutes and Cases.

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659639
 
Bandwagon

To bandwagon is a form of persuasion by telling that one should do something as the others are doing the same thing.

for more informations see:
http://persweb.direct.ca/ikhan/elementary/wsoccult6.html

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611661/100438658522
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Introduction: The Substitution of Human Faculties with Technology: Powered Machines

The development of the steam engine in 1776 represented a major advance in the construction of powered machines and marked the beginning of the Industrial Revolution. Powered engines and machines soon became common and led to the first extensive mechanization of manufacturing processes. The development of large-scale machine production on one hand decreased the demand for craftsmen and increased the demand for semiskilled and unskilled workers and on the other altered the nature of the work process from one mainly depending on physical power to one primarily dominated by technology.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611663/100438659309
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Intelsat

Intelsat, the world's biggest communication satellite services provider, is still mainly owned by governments, but will be privatised during 2001, like Eutelsat. A measure already discussed 1996 at an OECD competition policy roundtable in 1996. Signatory of the Intelsat treaty for the United States of America is Comsat, a private company listed on the New York Stock Exchange. Additionally Comsat is one of the United Kingdom's signatories. Aggregated, Comsat owns about 20,5% of Intelsat already and is Intelsat's biggest shareholder. In September 1998 Comsat agreed to merge with Lockheed Martin. After the merger, Lockheed Martin will hold at least 49% of Comsat share capital.

http://www.intelsat.int/index.htm

http://www.eutelsat.org/
http://www.oecd.org//daf/clp/roundtables/SATS...
http://www.comsat.com/
http://www.nyse.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
INDEXCARD, 1/7
 
General Electric

GE is a major American corporation and one of the largest and most diversified corporations in the world. Its products include electrical and electronic equipment, plastics, aircraft engines, medical imaging equipment, and financial services. The company was incorporated in 1892, and in 1986 GE purchased the RCA Corporation including the RCA-owned television network, the National Broadcasting Company, Inc. In 1987, however, GE sold RCA's consumer electronics division to Thomson SA, a state-owned French firm, and purchased Thomson's medical technology division. In 1989 GE agreed to combine its European business interests in appliances, medical systems, electrical distribution, and power systems with the unrelated British corporation General Electric Company. Headquarters are in Fairfield, Conn., U.S.

INDEXCARD, 2/7
 
George Boole

b. Nov. 2, 1815, Lincoln, Lincolnshire, England
d. Dec. 8, 1864, Ballintemple, County Cork, Ireland

English mathematician who helped establish modern symbolic logic and whose algebra of logic, now called Boolean algebra, is basic to the design of digital computer circuits. One of the first Englishmen to write on logic, Boole pointed out the analogy between the algebraic symbols and those that can represent logical forms and syllogisms, showing how the symbols of quantity can be separated from those of operation. With Boole in 1847 and 1854 began the algebra of logic, or what is now called Boolean algebra. It is basically two-valued in that it involves a subdivision of objects into separate classes, each with a given property. Different classes can then be treated as to the presence or absence of the same property.


INDEXCARD, 3/7
 
Charles Babbage

b. December 26, 1791, London, England
d. October 18, 1871, London, England

English mathematician and inventor who is credited with having conceived the first automatic digital computer. The idea of mechanically calculating mathematical tables first came to Babbage in 1812 or 1813. Later he made a small calculator that could perform certain mathematical computations to eight decimals. During the mid-1830s Babbage developed plans for the so-called analytical engine, the forerunner of the modern digital computer. In this device he envisioned the capability of performing any arithmetical operation on the basis of instructions from punched cards, a memory unit in which to store numbers, sequential control, and most of the other basic elements of the present-day computer.

INDEXCARD, 4/7
 
Machine language

Initially computer programmers had to write instructions in machine language. This coded language, which can be understood and executed directly by the computer without conversion or translation, consists of binary digits representing operation codes and memory addresses. Because it is made up of strings of 1s and 0s, machine language is difficult for humans to use.

INDEXCARD, 5/7
 
Binary number system

In mathematics, the term binary number system refers to a positional numeral system employing 2 as the base and requiring only two different symbols, 0 and 1. The importance of the binary system to information theory and computer technology derives mainly from the compact and reliable manner in which data can be represented in electromechanical devices with two states--such as "on-off," "open-closed," or "go-no go."

INDEXCARD, 6/7
 
Bandwidth

The bandwidth of a transmitted communications signal is a measure of the range of frequencies the signal occupies. The term is also used in reference to the frequency-response characteristics of a communications receiving system. All transmitted signals, whether analog or digital, have a certain bandwidth. The same is true of receiving systems.

Generally speaking, bandwidth is directly proportional to the amount of data transmitted or received per unit time. In a qualitative sense, bandwidth is proportional to the complexity of the data for a given level of system performance. For example, it takes more bandwidth to download a photograph in one second than it takes to download a page of text in one second. Large sound files, computer programs, and animated videos require still more bandwidth for acceptable system performance. Virtual reality (VR) and full-length three-dimensional audio/visual presentations require the most bandwidth of all.

In digital systems, bandwidth is data speed in bits per second (bps).

Source: Whatis.com

INDEXCARD, 7/7