Basics: Protected Works

Usually the subject matter of copyright is described as "literary and artistic works" - original creations in the fields of literature and arts. Such works may be expressed in words, symbols, pictures, music, three-dimensional objects, or combinations thereof. Practically all national copyright laws provide for the protection of the following types of works:

Literary works: novels, poems dramatic works and any other writings, whether published or unpublished; in most countries also computer programs and "oral works"

Musical works

Artistic works: whether two-dimensional or three-dimensional; irrespective of their content and destination

Maps and technical drawings

Photographic works: irrespective of the subject matter and the purpose for which made

Audiovisual works: irrespective of their purpose, genre, length, method employed or technical process used

Some copyright laws also provide for the protection of choreographic works, derivative works (translations, adaptions), collections (compilations) of works and mere data (data bases); collections where they, by reason of the selection and arrangement of the contents, constitute intellectual creations. Furthermore in some countries also "works of applied art" (furniture, wallpaper etc.) and computer programs (either as literary works or independently) constitute copyrightable matter.

Under certain national legislations the notion "copyright" has a wider meaning than "author's rights" and, in addition to literary and artistic works, also extends to the producers of sound recordings, the broadcasters of broadcasts and the creators of distinctive typographical arrangements of publications.


TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659538
 
0 - 1400 A.D.

150
A smoke signals network covers the Roman Empire

The Roman smoke signals network consisted of towers within a visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling.
For a similar telegraph network in ancient Greece see Aeneas Tacitus' optical communication system.

About 750
In Japan block printing is used for the first time.

868
In China the world's first dated book, the Diamond Sutra, is printed.

1041-1048
In China moveable types made from clay are invented.

1088
First European medieval university is established in Bologna.

The first of the great medieval universities was established in Bologna. At the beginning universities predominantly offered a kind of do-it-yourself publishing service.

Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so that you had your own copy of a book, thus enabling you to hold a lecture, too.

For further details see History of the Idea of a University, http://quarles.unbc.edu/ideas/net/history/history.html

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611796/100438659702
 
Cryptography's Terms and background

"All nature is merely a cipher and a secret writing."
Blaise de Vigenère

In the (dis-)information age getting information but at the same time excluding others from it is part of a power-game (keeping the other uneducated). The reason for it eventually has found an argument called security.
Compared to the frequency of its presence in articles, the news and political speeches security seems to be one of the most popular words of the 90's. It must be a long time ago when that word was only used for and by the military and the police. Today one can find it as part of every political issue. Even development assistance and nutrition programs consider it part of its work.
The so-called but also real need for information security is widespread and concerning everybody, whether someone uses information technology or not. In any case information about individuals is moving globally; mostly sensitive information like about bank records, insurance and medical data, credit card transactions, and much much more. Any kind of personal or business communication, including telephone conversations, fax messages, and of course e-mail is concerned. Not to forget further financial transactions and business information. Almost every aspect of modern life is affected.
We want to communicate with everybody - but do not want anybody to know.

Whereas the market already depends on the electronic flow of information and the digital tools get faster and more sophisticated all the time, the rise of privacy and security concerns have to be stated as well.
With the increase of digital communication its vulnerability is increasing just as fast. And there exist two (or three) elements competing and giving the term digital security a rather drastic bitter taste: this is on the one hand the growing possibility for criminals to use modern technology not only to hide their source and work secretly but also to manipulate financial and other transfers. On the other hand there are the governments of many states telling the population that they need access to any kind of data to keep control against those criminals. And finally there are those people, living between enlightening security gaps and at the same time harming other private people's actions with their work: computer hackers.
While the potential of global information is regarded as endless, it is those elements that reduce it.

There is no definite solution, but at least some tools have been developed to improve the situation: cryptography, the freedom to encode those data that one does not want to be known by everybody, and give a possibility to decode them to those who shall know the data.

During the last 80 years cryptography has changed from a mere political into a private, economic but still political tool: at the same time it was necessary to improve the tools, eventually based on mathematics. Hence generally cryptography is regarded as something very complicated. And in many ways this is true as the modern ways of enciphering are all about mathematics.

"Crypto is not mathematics, but crypto can be highly mathematical, crypto can use mathematics, but good crypto can be done without a great reliance on complex mathematics." (W.T. Shaw)

For an introduction into cryptography and the mathematical tasks see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/index.htm
http://www.ccc.de/CCC-CA/policy.html

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438658895
 
Intellectual Property: A Definition

Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches:

1) Industrial Property

a) Inventions
b) Marks (trademarks and service marks)
c) Industrial designs
d) Unfair competition (trade secrets)
e) Geographical indications (indications of source and appellations of origin)

2) Copyright

The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied.

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659434
 
Legal Protection: National Legislation

Intellectual property - comprising industrial property and copyright - in general is protected by national legislation. Therefore those rights are limited territorially and can be exercised only within the jurisdiction of the country or countries under whose laws they are granted.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659540
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Division of labor

The term refers to the separation of a work process into a number of tasks, with each task performed by a separate person or group of persons. It is most often applied to mass production systems, where it is one of the basic organizing principles of the assembly line. Breaking down work into simple, repetitive tasks eliminates unnecessary motion and limits the handling of tools and parts. The consequent reduction in production time and the ability to replace craftsmen with lower-paid, unskilled workers result in lower production costs and a less expensive final product. The Scottish economist Adam Smith saw in this splitting of tasks a key to economic progress by providing a cheaper and more efficient means of producing economic goods.

INDEXCARD, 1/8
 
Adi Shamir

Adi Shamir was one of three persons in a team to invent the RSA public-key cryptosystem. The other two authors were Ron Rivest and Leonard M. Adleman.

INDEXCARD, 2/8
 
Assembly line

An assembly line is an industrial arrangement of machines, equipment, and workers for continuous flow of workpieces in mass production operations. An assembly line is designed by determining the sequences of operations for manufacture of each product component as well as the final product. Each movement of material is made as simple and short as possible with no cross flow or backtracking. Work assignments, numbers of machines, and production rates are programmed so that all operations performed along the line are compatible.

INDEXCARD, 3/8
 
Viacom

One of the largest and foremost communications and media conglomerates in the
world. Founded in 1971, the present form of the corporation dates from 1994 when Viacom Inc., which owned radio and television stations and cable television programming services and systems, acquired the entertainment and publishing giant Paramount Communications Inc. and then merged with the video and music retailer Blockbuster Entertainment Corp. Headquarters are in New York City.

INDEXCARD, 4/8
 
John Dee

b. July 13, 1527, London, England
d. December 1608, Mortlake, Surrey

English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595.

INDEXCARD, 5/8
 
Internet Software Consortium

The Internet Software Consortium (ISC) is a nonprofit corporation dedicated to the production of high-quality reference implementations of Internet standards that meet production standards. Its goal is to ensure that those reference implementations are properly supported and made freely available to the Internet community.

http://www.isc.org

INDEXCARD, 6/8
 
The World Wide Web History Project

The ongoing World Wide Web History Project was established to record and publish the history of the World Wide Web and its roots in hypermedia and networking. As primary research methods are used archival research and the analysis of interviews and talks with pioneers of the World Wide Web. As result a vast of collection of historic video, audio, documents, and software is expected. The project's digital archive is currently under development.

http://www.webhistory.org/home.html

INDEXCARD, 7/8
 
Medieval universities and copying of books

The first of the great medieval universities was established at Bologna. At the beginning, universities predominantly offered a kind of do-it-yourself publishing service.

Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so you had your own copy of a book, thus enabling you to hold a lecture, too.

For further details see History of the Idea of a University, http://quarles.unbc.edu/ideas/net/history/history.html

http://quarles.unbc.edu/ideas/net/history/his...
INDEXCARD, 8/8