Key-Systems

As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce.
Key cryptosystems try to provide more privacy.

symmetric-key cryptosystems:
The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it?
In former times messengers or pigeons were doing the exchange of those keys.

Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated.
Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms.
some symmetric-key systems are:

- DES (Data Encryption Standard), the standard for credit cards
- Triple-DES, which is a variation of DES, encrypting the plaintext three times.
- IDEA (International Data Encryption Standard)
- blowfish encryption algorithm, which is said to be faster than DES and IDEA

Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not.

For further information see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/symmetr/content.htm

TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438659090
 
Digital Signatures, Timestamps etc

Most computer systems are far from being secure.
A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data.
It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector.

Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions.

If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool.

In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too.

A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged.

For more terms of cryptography and more information see:
http://poseidon.csd.auth.gr/signatures
http://www.dlib.org/dlib/december97/ibm/12lotspiech.html
http://www.cryptography.com/technology/technology.html
http://www.cdt.org/crypto/glossary.shtml
http://www.oecd.org//dsti/sti/it/secur/prod/GD97-204.htm

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438659015
 
Extract of Disney’s Content Production and Distribution Holdings

Although the traditional media companies first steps into the digital sphere were fairly clumsy, they have quickly learned from their mistakes and continued to enlarge their Internet presence. Time Warner now for instance operates about 130 Web-Sites (http://www.timewarner.com/corp/about/pubarchive/websites.html). Anyhow the stronger online-engagement of the big media conglomerates by 1998 has led to the establishment of a new pattern: "More than three-quarters of the 31 most visited news and entertainment websites were affiliated with large media firms, and most of the rest were connected to outfits like AOL and Microsoft." (Broadcasting and Cable, 6/22/98).

During the last years many of the smaller players in the field of digital media have been driven out of competition by the huge media conglomerates. This mainly is a result of the advantages that the commercial media giants have over their less powerful counterparts:

    As engagement in online activities mostly does not lead to quick profits, investors must be able to take losses, which only powerful companies are able to.



    Traditional media outlets usually have huge stocks of digital programming, which they can easily plug into the Internet at little extra cost.



    To generate audience, the big media conglomerates constantly promote their Websites and other digital media products on their traditional media holdings.



    As possessors of the hottest "brands" commercial media companies often get premier locations from browser software makers, Internet service providers, search engines and portals.



    Having the financial resources at their disposition the big media firms are aggressive investors in start-up Internet media companies.



Commercial media companies have close and long ties to advertisers, which enables them to seize most of these revenues.

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611795/100438659167
 
Commercial vs. Independent Content: Human and Financial Resources

- Concerning their human and financial resources commercial media and independent content provider are an extremely unequal pair. While the 1998 revenues of the world's leading media conglomerates (AOL Time Warner, Disney, Bertelsmann, Viacom and the News Corporation) amounted to US$ 91,144,000,000 provider of independent content usually act on a non-profit basis and to a considerable extent depend on donations and contributions.

Also the human resources they have at their disposal quite differ. Viacom for example employs 112,000 people. Alternative media conversely are mostly run by a small group of activists, most of them volunteers. Moreover the majority of the commercial media giants has a multitude of subsidiaries (Bertelsmann for instance has operations in 53 countries), while independent content provider in some cases do not even have proper office spaces. Asked about their offices number of square meters Frank Guerrero from RTMark comments "We have no square meters at all, because we are only on the web. I guess if you add up all of our servers and computers we would take up about one or two square meters."

TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611795/100438659146
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Codices, 1th century B.C.

The transformation of writings from scrolls to codices, in basic the hardcover book as we know it today, is an essential event in European history. Quoting accurately by page number, browsing through pages and skipping chapters, all impossible while reading scrolls, become possible.

In the computer age we are witnesses to a kind of revival of the scrolls as we scroll upwards and downwards a document we just see a portion of. Maybe the introduction of hypertext is the beginning of a similar change as the replacement of scrolls by codices.

INDEXCARD, 1/5
 
Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks

This book gives a fascinating glimpse of the many documented attempts throughout history to develop effective means for long distance communications. Large-scale communication networks are not a twentieth-century phenomenon. The oldest attempts date back to millennia before Christ and include ingenious uses of homing pigeons, mirrors, flags, torches, and beacons. The first true nationwide data networks, however, were being built almost two hundred years ago. At the turn of the 18th century, well before the electromagnetic telegraph was invented, many countries in Europe already had fully operational data communications systems with altogether close to one thousand network stations. The book shows how the so-called information revolution started in 1794, with the design and construction of the first true telegraph network in France, Chappe's fixed optical network.

http://www.it.kth.se/docs/early_net/

INDEXCARD, 2/5
 
Kessler Marketing Intelligence (KMI)

KMI is the leading source for information on fiber-optics markets. It offers market research, strategic analysis and product planning services to the opto-electronics and communications industries. KMI tracks the worldwide fiber-optic cable system and sells the findings to the industry. KMI says that every fiber-optics corporation with a need for strategic market planning is a subscriber to their services.

http://www.kmicorp.com/

http://www.kmicorp.com/
INDEXCARD, 3/5
 
International Cable Protection Committee (ICPC)

The ICPC aims at reducing the number of incidents of damages to submarine telecommunications cables by hazards.

The Committee also serves as a forum for the exchange of technical and legal information pertaining to submarine cable protection methods and programs and funds projects and programs, which are beneficial for the protection of submarine cables.

Membership is restricted to authorities (governmental administrations or commercial companies) owning or operating submarine telecommunications cables. As of May 1999, 67 members representing 38 nations were members.

http://www.iscpc.org

INDEXCARD, 4/5
 
Invention

According to the WIPO an invention is a "... novel idea which permits in practice the solution of a specific problem in the field of technology." Concerning its protection by law the idea "... must be new in the sense that is has not already been published or publicly used; it must be non-obvious in the sense that it would not have occurred to any specialist in the particular industrial field, had such a specialist been asked to find a solution to the particular problem; and it must be capable of industrial application in the sense that it can be industrially manufactured or used." Protection can be obtained through a patent (granted by a government office) and typically is limited to 20 years.

INDEXCARD, 5/5