The third industiral revolution. Life as a product.

Many years ago, the German philosopher Günther Anders already described the historical situation in which the homo creator and homo materia coincide as the "third industrial revolution". Anders, who spent many years exiled in the USA after fleeing from the Nazis, made issue of the ambivalence of modern science and technology as early as in the 1950s, and many of the concerns which today form part of the debates around the implications of computer technology are already polemically discussed in his work.

The "third industrial revolution" is characterized by men becoming the "raw material" of their own industries. Product and producer, production and consumption, technology and nature are no longer meaningful pairs of opposites. The third is also the last revolution, as it is difficult to think of further revolutions when the distinction between subject and object becomes blurred. The world is becoming a Bestand and the human body and mind are no protected zones. They are something like the last safety zone of human being which is now itself becoming a basis for technological innovation. When the subject is weakened by its technical environment, the use of technical crooks for body and mind becomes an obvious "solution", even if the technically strengthened subject is strengthened at the cost of no longer being a "subject" in the traditional, metaphysical sense. Biological processes are dissected and subjected to technical control. This technical control is technical in two senses: it is not only control through technology but by ttechnology itsself, since it is not carried out by unaided human minds, but increasingly by intelligent machines.

The point where this Andersian third industrial revolution reaches an unprecedented logic seems to lie within the realm of genetic engeneering. This example shows that the dissection of humanness - the decoding of genetic information - is tantamount to commodification. The purpose of the commercial genetic research projects is the use of genetic information as a resource for the development of new products, e.g. in pharmaceutics. Genetic products carry the promise of offering a solution to so-far uncurable diseases such as cancer, Alzeheimer, heart disorders, schizophrenia, and others, but they also open up the possibility of "breaking the chains of evolution", of actively manipulating the genetic structure of human beings and of "designing" healthy, long-living, beautiful, hard-working etc. beings. Here, the homo creator and the homo materia finally become indistinguishable and we are being to merge with our products in such a way that it "we" loses the remains of its meaning.

Since 1990 research on human genetics is organised in the Human Genome Project where universities from various countries cooperate in transcribing the entire genetic information of the predecessor of the homo sapiens , composed of 80,000 genes and more than 3 billion DNA sequences. The objective of the project is to complet the transcription process by the year 2003. One of the rationales of organising Genome research in an international fashion has been its extremely high cost, and also an ethical consideration, according to which human genetic information must not be a private property, which would be the case when genetic information becomes patentised.

But exactly this patentising is of paramount importance in the emerging "post-industrial" society where knowledge becomes the most important resource. A patent is nothing else than a property title to a piece of "know-how", and an necessary consequence commodification. When life no longer simply a natural creation but a product, it, too, will be patented and becomes a commodity.

Against the idea of the human genome as a public good, or an "open source", there is a growing competion on the part of private industry. Companies such as Celera deloped deciphering technologies which may allow an earlier completion of the project. In the case that human genetic information actually becomes patentised, then the technical possibility of interfering in human evolution would at leasst be partly in the hands of private business. What has been called a "quintessentially public resource" Iceland. In this nordic country, the government decided to allow the American genetics company DeCode to access and commercially exploit the anonymised genetic information of the entire population of Iceland. The Icelandic population provides a particularly good "sample" for research, because there has been almost no immigration since the times of the Vikings, and therefore genetic variations can be more easily detected than in populations with a more diverse genome. Also, Iceland possesses a wealth of genealogical information - many families are able to trace their origins back to the 12th century. Here modern science has found optimal laboratory conditions. Perhaps, had European history taken a different course in the 1930s and 40s, the frontier of commercial gentetic research would have found optimal conditions in an "ethnically clean" centre of Euorpe? The requirement of "purity", of "eliminating" difference prior to constructing knowledge, inscribed in the modern science since its beginnings, also applies to genome research. Except that in this kind of research humankind itself needs to fulfill laboratory standards of cleanliness, and that the biological transcription of humanness, the biological "nucleus" of the species, becomes the object of research, much like the nucleus of matter, the atom, in the 1940s and 50s.

But the commodification of life is not limited ot the human species. Genetically altered animals and plants are also suffering the same fate, and in most industrialised nations it is now possible to patent genetically engeneered species and crops. The promises of the "Green Revolution" of the 1960s are now repeated in the genetic revolution. Genetic engeneering, so it is argued, will be able to breed animals and plants which resist disease and yield more "food" and will therfore help to tackle problems of undernutrition and starvation. Companies such as Monsanto are at the forefront of developing genetically altered ("enhanced") food crops and promise to solve not only the problem of world hunger, but to improve the safety and even the taste of food. Convinced of the opposite of such high-flown promises, Vandana Shiva from the Indian Research Foundation for Science, Technology and Ecology emphasises the relationship between post-colonial style exploitation of so-called "third world" countries. She also stresses the adverse ecological impact of biotechnology: "Today, the world is on the brink of a biological diversity crisis. The constantly diminishing store of biodiversity on our planet poses an enormous environmental threat"http://www.cnn.com/bioethics/9902/iceland.dna/template.html, 22 February 1999

http://www.indiaserver.com/betas/vshiva/title.htm, 9 February 2000

TEXTBLOCK 1/16 // URL: http://world-information.org/wio/infostructure/100437611777/100438658827
 
Missing Labeling of Online Ads

One of the most crucial issues in on-line advertising is the blurring of the line between editorial content and ads. Unlike on TV and in the print media, where guidelines on the labeling of advertisements, which shall enable the customer to distinguish between editorial and ads, exist, similar conventions have not yet evolved for Internet content. Labeling of online advertisement up to now has remained the rare exception, with only few sites (e.g. http://www.orf.at) explicitly indicating non-editorial content.

TEXTBLOCK 2/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438657963
 
On-line Advertising Revenues

Although Internet advertising only really started in 1994, revenues showed a steady and fast growth. In 1997 US$ 906.5 million were spent on on-line advertising. Compared with advertising revenue for the television industry in equivalent dollars for its third year, the Internet was slightly ahead, at US$ 907 million compared to television's US$ 834 million. 1998 on-line advertising grew by 112 percent to US$ 1.92 billion in revenues, and is on track to hit US$ 4 billion in 1999, which would put Internet advertising at about 2 percent of the U.S. ad market.

Table: Spending on On-Line Advertising by Category

(first quarter 1999)

Category

Percent

Consumer-related

27 %

Financial services

21 %

Computing

20 %

Retail/mail order

13 %

New media

8 %



Table: Types of On-Line Advertising

(first quarter 1999)

Type of Advertising

Percent

Banners

58 %

Sponsorships

29 %

Interstitials

6 %

E-mail

1 %

Others

6 %



Source: Internet Advertising Bureau (IAB).

TEXTBLOCK 3/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438657944
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 4/16 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 5/16 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Sponsorship Models

With new sponsorship models being developed, even further influence over content from the corporate side can be expected. Co-operating with Barnes & Nobel Booksellers, the bookish e-zine FEED for instance is in part relying on sponsoring. Whenever a specific title is mentioned in the editorial, a link is placed in the margin - under the heading "Commerce" - to an appropriate page on Barnes & Noble. Steve Johnson, editor of FEED, says "We do not take a cut of any merchandise sold through those links.", but admits that the e-zine does indirectly profit from putting those links there.

TEXTBLOCK 6/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438658034
 
Steganography

Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms.
Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee).
In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son.

for further details see:
http://home.att.net/~tleary/
http://www.thur.de/ulf/stegano/
http://www2.prestel.co.uk/littleton/gm2_rw.htm

One kind of steganogram is digital watermarking:
Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too.

Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe.
But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development.

for further information see:
http://www.isse.gmu.edu/~njohnson/Steganography

TEXTBLOCK 7/16 // URL: http://world-information.org/wio/infostructure/100437611776/100438659021
 
Economic structure; transparent customers

Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people.

User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying.

"Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent."

(David Sobel, Electronic Privacy Information Center)

TEXTBLOCK 8/16 // URL: http://world-information.org/wio/infostructure/100437611726/100438658925
 
acceleration

TEXTBLOCK 9/16 // URL: http://world-information.org/wio/infostructure/100437611777/100438658418
 
The Concept of the Public Sphere

According to social critic and philosopher Jürgen Habermas "public sphere" first of all means "... a domain of our social life in which such a thing as public opinion can be formed. Access to the public sphere is open in principle to all citizens. A portion of the public sphere is constituted in every conversation in which private persons come together to form a public. They are then acting neither as business or professional people conducting their private affairs, nor as legal consociates subject to the legal regulations of a state bureaucracy and obligated to obedience. Citizens act as a public when they deal with matters of general interest without being subject to coercion; thus with the guarantee that they may assemble and unite freely, and express and publicize their opinions freely."

The system of the public sphere is extremely complex, consisting of spatial and communicational publics of different sizes, which can overlap, exclude and cover, but also mutually influence each other. Public sphere is not something that just happens, but also produced through social norms and rules, and channeled via the construction of spaces and the media. In the ideal situation the public sphere is transparent and accessible for all citizens, issues and opinions. For democratic societies the public sphere constitutes an extremely important element within the process of public opinion formation.

TEXTBLOCK 10/16 // URL: http://world-information.org/wio/infostructure/100437611734/100438658403
 
FREEnet (The Network for Research, Education and Engineering)

FREEnet is an academic and research network, interconnecting computer networks of research institutes of the Russian Academy of Sciences, universities, colleges, and other research and academic institutions. It was established in 1991 by the N.D. Zelinsky Institute of Organic Chemistry at the Center of Computer Assistance to Chemical Research. It provides its more than 350 members of the academic and educational community with all types of basic Internet services and various information services.

Strategies and Policies

FREEnets general intention is to become a backbone infrastructure providing:

Open networking services for efficient access to the network and information resources located both in Russia and all over the Internet.

Reliable network connectivity for research, academic and educational communities in Russia and abroad.

Worldwide access to science and information resources of the Russian Academy of Sciences, universities and colleges in Russia.

Assistance to the progress of Russian based fundamental research.

Assistance to the development and application of modern information technologies in education.

TEXTBLOCK 11/16 // URL: http://world-information.org/wio/infostructure/100437611734/100438659253
 
Product Placement

With television still being very popular, commercial entertainment has transferred the concept of soap operas onto the Web. The first of this new species of "Cybersoaps" was "The Spot", a story about the ups and downs of an American commune. The Spot not only within short time attracted a large audience, but also pioneered in the field of online product placement. Besides Sony banners, the companies logo is also placed on nearly every electronic product appearing in the story. Appearing as a site for light entertainment, The Spots main goal is to make the name Sony and its product range well known within the target audience.

TEXTBLOCK 12/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438658026
 
The Advertising Industry

The advertising industry is dominated by three huge advertising networks, which offer their services throughout the world. Gross income of the three leading agencies is twice as much, as the one of places four to ten.

Table: World's Top 10 Advertising Organizations 1999

(figures in millions of U.S. dollars)

Rank 1999

Advertising Organization

Headquarters

World-Wide Gross Income 1999

1

Omnicom

New York, USA

$ 5,743.4

2

Interpublic Group of Cos.

New York, USA

$ 5,079.3

3

WPP Group

London, UK

$ 4,819.3

4

Havas Advertising

Levallois-Perret, France

$ 2,385.1

5

Dentsu

Tokyo, Japan

$ 2,106.8

6

B Com3 Group

Chicago, USA

$ 1,933.8

7

Young & Rubicam Inc.

New York, USA

$ 1,870.1

8

Grey Advertising

New York, USA

$ 1,577.9

9

True North

Chicago, USA

$ 1,489.2

10

Publicis SA

Paris, France

$ 1,434.6



Table: Top 10 Global Marketers 1998

(figures in millions of U.S. dollars)

Rank 1998

Advertiser

Headquarters

World-Wide Media Spending 1998

1

Procter & Gamble Co.

Cincinnati (US)

$ 4,747.6

2

Unilever

Rotterdam (NL)/London (UK)

$ 3,428.5

3

General Motors Corp.

Detroit (US)

$ 3,193.5

4

Ford Motor Co.

Darborn (US)

$ 2,229.5

5

Philip Morris Cos.

New York

$ 1,980.3

6

Daimler Chrysler

Stuttgart (GER)/Auburn Hills (US

$ 1,922.2

7

Nestle

Vevey (SUI)

$ 1,833.0

8

Toyota Motor Corp.

Toyota City (JP)

$ 1,692.4

9

Sony Corp.

Tokyo (JP)

$ 1,337.7

10

Coca-Cola Co.

Atlanta (US)

$ 1,327.3



On the other hand the three biggest advertisers only spend about US$ 2 millions less than places four to ten together. Whereas money spent on advertising in traditional media comes from very diverse categories, companies offering computer hard- and software, peripherals or Internet services mainly pay for on-line advertisements.

Table: Top 10 Internet Advertisers 1998

(figures in millions of U.S. dollars)

Rank 1998

Advertiser

Internet Spending 1998

1998 - 1997 % Change

1

Microsoft Corp.

$ 34.9

9.4

2

IBM Corp.

$ 28.5

58.6

3

Compaq Computer Corp.

$ 16.2

169.8

4

General Motors Corp.

$ 12.7

84.8

5

Excite

$ 12.4

1.5

6

Infoseek Corp.

$ 9.3

22.3

7

AT&T Corp.

$ 9.3

43.5

8

Ford Motor Co.

$ 8.6

46.7

9

Hewlett-Packard Co.

$ 8.1

102.9

10

Barnes & Noble

$ 7.6

280.2



Source: Advertising Age

TEXTBLOCK 13/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438657954
 
Commercial vs. Independent Content

Commercial media aim towards economies of scale and scope, with the goal to maximize profits. As advertising money usually is their primary source of revenue their content very often is attuned to meet the needs of advertisers and marketers. Information necessary for a citizen's participation in the public sphere usually only plays a minor role in their programming, as it does not comply with the demands of an economic system whose principal aim is the generation of profit. They also virtually always are structured in accord with and to help reinforce society's defining hierarchical social relationships, and are generally controlled by and controlling of other major social institutions, particularly corporations.

Independent content provider on the other hand mostly act on a non-profit basis and try to avoid dependence on corporate powers and the state. One of their main concerns is the critical observation of public interest issues. The central aim of independent content provider's activities usually is to bring aspects and standpoints neglected by the (commercial) mainstream media to the public and subvert society's defining hierarchical social relationships. Promoting public debate and an active civil society they engage in the organization of alert actions and information campaigns or create subversive art

TEXTBLOCK 14/16 // URL: http://world-information.org/wio/infostructure/100437611734/100438659280
 
Internet Content Providers Perspective

As within the traditional media landscape, Internet content providers have two primary means of generating revenue: Direct sales or subscriptions, and advertising. Especially as charging Internet users for access to content - with all the free material available - has proven problematic, advertising is seen as the best solution for creating revenues in the short term. Therefore intense competition has started among Internet content providers and access services to attract advertising money.

Table: Web-Sites Seeking Advertising


Period

Number of Web-Sites

June 1999

2111

July 1999

2174

August 1999

2311

September 1999

2560



Source: Adknowledge eAnalytics. Online Advertising Report

TEXTBLOCK 15/16 // URL: http://world-information.org/wio/infostructure/100437611652/100438657986
 
Definition

During the last 20 years the old Immanuel Wallerstein-paradigm of center - periphery and semi-periphery found a new costume: ICTs. After Colonialism, Neo-Colonialism and Neoliberalism a new method of marginalization is emerging: the digital divide.

"Digital divide" describes the fact that the world can be divided into people who
do and people who do not have access to (or the education to handle with) modern information technologies, e.g. cellular telephone, television, Internet. This digital divide is concerning people all over the world, but as usually most of all people in the formerly so called third world countries and in rural areas suffer; the poor and less-educated suffer from that divide.
More than 80% of all computers with access to the Internet are situated in larger cities.

"The cost of the information today consists not so much of the creation of content, which should be the real value, but of the storage and efficient delivery of information, that is in essence the cost of paper, printing, transporting, warehousing and other physical distribution means, plus the cost of the personnel manpower needed to run these `extra' services ....Realizing an autonomous distributed networked society, which is the real essence of the Internet, will be the most critical issue for the success of the information and communication revolution of the coming century of millennium."
(Izumi Aizi)

for more information see:
http://www.whatis.com/digital_divide.htm

TEXTBLOCK 16/16 // URL: http://world-information.org/wio/infostructure/100437611730/100438659300
 
Nadia Thalman

Nadia Thalman is director of MIRAlab at the University of Geneva, Switzerland. Thalmann has become known as the creator of "virtual Marylyn", an installation which allowed visitors to literally to slip into Marylyn's shoes. Thalman's work is located at interface between science and art. It is about modelling human bodies for science and creative purposes, e.g. as virtual actors in movies. Thalman insists that artificial beings must be beautiful, in addition to being useful, as we will be living with them at close quarters.

INDEXCARD, 1/22
 
NSFNet

Developed under the auspices of the National Science Foundation (NSF), NSFnet served as the successor of the ARPAnet as the main network linking universities and research facilities until 1995, when it was replaced it with a commercial backbone network. Being research networks, ARPAnet and NSFnet served as testing grounds for future networks.

INDEXCARD, 2/22
 
Alexander Graham Bell

b., March 3, 1847, Edinburgh

d. Aug. 2, 1922, Beinn Bhreagh, Cape Breton Island, Nova Scotia, Canada

American audiologist and inventor wrongly remembered for having invented the telephone in 1876. Although Bell introduced the first commercial application of the telephone, in fact a German teacher called Reiss invented it.

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/1/0,5716,15411+1+15220,00.html

INDEXCARD, 3/22
 
AT&T

AT&T Corporation provides voice, data and video communications services to large and small businesses, consumers and government entities. AT&T and its subsidiaries furnish domestic and international long distance, regional, local and wireless communications services, cable television and Internet communications services. AT&T also provides billing, directory and calling card services to support its communications business. AT&T's primary lines of business are business services, consumer services, broadband services and wireless services. In addition, AT&T's other lines of business include network management and professional services through AT&T Solutions and international operations and ventures. In June 2000, AT&T completed the acquisition of MediaOne Group. With the addition of MediaOne's 5 million cable subscribers, AT&T becomes the country's largest cable operator, with about 16 million customers on the systems it owns and operates, which pass nearly 28 million American homes. (source: Yahoo)

Slogan: "It's all within your reach"

Business indicators:

Sales 1999: $ 62.391 bn (+ 17,2 % from 1998)

Market capitalization: $ 104 bn

Employees: 107,800

Corporate website: http://www.att.com http://www.att.com/
INDEXCARD, 4/22
 
Expert system

Expert systems are advanced computer programs that mimic the knowledge and reasoning capabilities of an expert in a particular discipline. Their creators strive to clone the expertise of one or several human specialists to develop a tool that can be used by the layman to solve difficult or ambiguous problems. Expert systems differ from conventional computer programs as they combine facts with rules that state relations between the facts to achieve a crude form of reasoning analogous to artificial intelligence. The three main elements of expert systems are: (1) an interface which allows interaction between the system and the user, (2) a database (also called the knowledge base) which consists of axioms and rules, and (3) the inference engine, a computer program that executes the inference-making process. The disadvantage of rule-based expert systems is that they cannot handle unanticipated events, as every condition that may be encountered must be described by a rule. They also remain limited to narrow problem domains such as troubleshooting malfunctioning equipment or medical image interpretation, but still have the advantage of being much lower in costs compared with paying an expert or a team of specialists.

INDEXCARD, 5/22
 
Fiber-optic cable networks

Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the World Wide Web.

Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Alexander Graham Bell might have not envisioned when he transmitted the first words - "Mr. Watson, come here. I want you" - over a copper wire.

Copper wires will not come out of use in the foreseeable future because of technologies as DSL that speed up access drastically. But with the technology to transmit signals at more than one wavelength on fiber-optic cables, there bandwidth is increasing, too.

For technical information from the Encyclopaedia Britannica on telecommunication cables, click here. For technical information from the Encyclopaedia Britannica focusing on fiber-optic cables, click here.

An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click here for reading.

Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click here for reading.

A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the International Cable Protection Committee.

For maps of fiber-optic cable networks see the website of Kessler Marketing Intelligence, Inc.

http://www.britannica.com/bcom/eb/article/4/0...
http://www.britannica.com/bcom/eb/article/4/0...
http://www.wired.com/wired/archive/4.12/ffgla...
http://www.pretext.com/mar98/features/story3....
INDEXCARD, 6/22
 
Wide Area Network (WAN)

A Wide Area Network is a wide area proprietary network or a network of local area networks. Usually consisting of computers, it may consist of cellular phones, too.

INDEXCARD, 7/22
 
Avatar

Traditionally, an avatar is a mythical figure half man half god. In Hindu mythology, avatars are the form that deities assume when they descend on earth. Greek and Roman mythologies also contain avatars in animal form or half animal, half man. In virtual space, the word avatar refers to a "virtual identity" that a user can construct for him / herself, e.g. in a chat-room. Avatars have also been a preferred object of media art.

INDEXCARD, 8/22
 
Censorship of Online Content in China

During the Tian-an men massacre reports and photos transmitted by fax machines gave notice of what was happening only with a short delay. The Chinese government has learned his lesson well and "regulated" Internet access from the beginning. All Internet traffic to and out of China passes through a few gateways, a few entry-points, thus making censorship a relatively easy task. Screened out are web sites of organizations and media which express dissident viewpoints: Taiwan's Democratic Progress Party and Independence Party, The New York Times, CNN, and sites dealing with Tibetan independence and human rights issues.

Users are expected not to "harm" China's national interests and therefore have to apply for permission of Internet access; Web pages have to be approved before being published on the Net. For the development of measures to monitor and control Chinese content providers, China's state police has joined forces with the MIT.

For further information on Internet censorship, see Human Rights Watch, World Report 1999.

http://www.dpp.org/
http://www.nytimes.com/
http://www.hrw.org/worldreport99/special/inte...
INDEXCARD, 9/22
 
The Rocky Horror Picture Show

The story of Frank-N-furter, Brad and Janet ... Don't dream it, be it!

http://www.rockyhorrorpictureshow.com/

INDEXCARD, 10/22
 
DMCA

The DMCA (Digital Millennium Copyright Act) was signed into law by U.S. President Clinton in 1998 and implements the two 1996 WIPO treaties (WIPO Performances and Phonograms Treaty and WIPO Copyright Treaty). Besides other issues the DMCA addresses the influence of new technologies on traditional copyright. Of special interest in the context of the digitalization of intellectual property are the titles no. 2, which refers to the limitation on the liability of online service providers for copyright infringement (when certain conditions are met), no. 3, that creates an exemption for making a copy of a computer program in case of maintenance and repair, and no. 4 which is concerned with the status of libraries and webcasting. The DCMA has been widely criticized for giving copyright-holders even more power and damage the rights and freedom of consumers, technological innovation, and the free market for information.

INDEXCARD, 11/22
 
World Wide Web (WWW)

Probably the most significant Internet service, the World Wide Web is not the essence of the Internet, but a subset of it. It is constituted by documents that are linked together in a way you can switch from one document to another by simply clicking on the link connecting these documents. This is made possible by the Hypertext Mark-up Language (HTML), the authoring language used in creating World Wide Web-based documents. These so-called hypertexts can combine text documents, graphics, videos, sounds, and Java applets, so making multimedia content possible.

Especially on the World Wide Web, documents are often retrieved by entering keywords into so-called search engines, sets of programs that fetch documents from as many servers as possible and index the stored information. (For regularly updated lists of the 100 most popular words that people are entering into search engines, click here). No search engine can retrieve all information on the whole World Wide Web; every search engine covers just a small part of it.

Among other things that is the reason why the World Wide Web is not simply a very huge database, as is sometimes said, because it lacks consistency. There is virtually almost infinite storage capacity on the Internet, that is true, a capacity, which might become an almost everlasting too, a prospect, which is sometimes consoling, but threatening too.

According to the Internet domain survey of the Internet Software Consortium the number of Internet host computers is growing rapidly. In October 1969 the first two computers were connected; this number grows to 376.000 in January 1991 and 72,398.092 in January 2000.

World Wide Web History Project, http://www.webhistory.org/home.html

http://www.searchwords.com/
http://www.islandnet.com/deathnet/
http://www.salonmagazine.com/21st/feature/199...
INDEXCARD, 12/22
 
Machine vision

A branch of artificial intelligence and image processing concerned with the identification of graphic patterns or images that involves both cognition and abstraction. In such a system, a device linked to a computer scans, senses, and transforms images into digital patterns, which in turn are compared with patterns stored in the computer's memory. The computer processes the incoming patterns in rapid succession, isolating relevant features, filtering out unwanted signals, and adding to its memory new patterns that deviate beyond a specified threshold from the old and are thus perceived as new entities.

INDEXCARD, 13/22
 
ciphers

the word "cipher" comes from the Hebrew word "saphar", meaning "to number". Ciphers are mere substitutions. Each letter of the alphabet gets substituted; maybe by one letter or two or more.

an example:
PLAINTEXT a b c d e f g h i j k l m n o p q r s t u v w x y z
CIPHERTEXT D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

INDEXCARD, 14/22
 
Bulletin Board Systems

A BBS (bulletin board system) is a computer that can be reached by computer modem dialing (you need to know the phone number) or, in some cases, by Telnet for the purpose of sharing or exchanging messages or other files. Some BBSs are devoted to specific interests; others offer a more general service. The definitive BBS List says that there are 40,000 BBSs worldwide.

Bulletin board systems originated and generally operate independently of the Internet.

Source: Whatis.com

INDEXCARD, 15/22
 
America Online

Founded in 1985, America Online is the world's biggest Internet service provider serving almost every second user. Additionally, America Online operates CompuServe, the Netscape Netcenter and several AOL.com portals. As the owner of Netscape, Inc. America Online plays also an important role in the Web browser market. In January 2000 America Online merged with Time Warner, the worlds leading media conglomerate, in a US$ 243,3 billion deal, making America Online the senior partner with 55 percent in the new company.

http://www.aol.com

http://www.aol.com/
INDEXCARD, 16/22
 
The Spot

http://www.thespot.com/

http://www.thespot.com/
INDEXCARD, 17/22
 
Enochian alphabet

Also "Angelic" language. Archaic language alphabet composed of 21 letters, discovered by John Dee and his partner Edward Kelley. It has its own grammar and syntax, but only a small sample of it has ever been translated to English.

INDEXCARD, 18/22
 
Artificial Intelligence

Artificial Intelligence is concerned with the simulation of human thinking and emotions in information technology. AI develops "intelligent systems" capable, for example, of learning and logical deduction. AI systems are used for creatively handling large amounts of data (as in data mining), as well as in natural speech processing and image recognition. AI is also used as to support decision taking in highly complex environments.
Yahoo AI sites: http://dir.yahoo.com/Science/Computer_Science/Artificial_Intelligence/
MIT AI lab: http://www.ai.mit.edu/


http://dir.yahoo.com/Science/Computer_Science...
http://www.ai.mit.edu/
INDEXCARD, 19/22
 
Donna Haraway

Ever since the publication of her Cyborg Manifesto Donna Haraway has been providing widely received theoretical contributions to the debate around artificial life. In the "Manifesto" she considers the political and social implications of the advent of artificial beings. A radical feminist, Haraway combines in her theoretical approach philosophy, cultural studies and gender studies.

Hyperlink to Donna Haraway: http://www.asahi-net.or.jp/~RF6T-TYFK/haraway.htmlWired Archive interviews with DH: http://www.wired.com/wired/archive//5.02/ffharaway.html?person=donna_haraway&topic_set=wiredpeople

http://www.asahi-net.or.jp/~RF6T-TYFK/haraway...
http://www.wired.com/wired/archive//5.02/ffha...
INDEXCARD, 20/22
 
The Flesh Machine

This is the tile of a book by the Critical Art Ensemble which puts the development of artifical life into a critical historical and political context, defining the power vectors which act as the driving force behind this development. The book is available in a print version (New York, Autonomedia 1998) and in an online version at http://www.critical-art.net/fles/book/index.html

INDEXCARD, 21/22
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 22/22