The Advertising Industry

The advertising industry is dominated by three huge advertising networks, which offer their services throughout the world. Gross income of the three leading agencies is twice as much, as the one of places four to ten.

Table: World's Top 10 Advertising Organizations 1999

(figures in millions of U.S. dollars)

Rank 1999

Advertising Organization

Headquarters

World-Wide Gross Income 1999

1

Omnicom

New York, USA

$ 5,743.4

2

Interpublic Group of Cos.

New York, USA

$ 5,079.3

3

WPP Group

London, UK

$ 4,819.3

4

Havas Advertising

Levallois-Perret, France

$ 2,385.1

5

Dentsu

Tokyo, Japan

$ 2,106.8

6

B Com3 Group

Chicago, USA

$ 1,933.8

7

Young & Rubicam Inc.

New York, USA

$ 1,870.1

8

Grey Advertising

New York, USA

$ 1,577.9

9

True North

Chicago, USA

$ 1,489.2

10

Publicis SA

Paris, France

$ 1,434.6



Table: Top 10 Global Marketers 1998

(figures in millions of U.S. dollars)

Rank 1998

Advertiser

Headquarters

World-Wide Media Spending 1998

1

Procter & Gamble Co.

Cincinnati (US)

$ 4,747.6

2

Unilever

Rotterdam (NL)/London (UK)

$ 3,428.5

3

General Motors Corp.

Detroit (US)

$ 3,193.5

4

Ford Motor Co.

Darborn (US)

$ 2,229.5

5

Philip Morris Cos.

New York

$ 1,980.3

6

Daimler Chrysler

Stuttgart (GER)/Auburn Hills (US

$ 1,922.2

7

Nestle

Vevey (SUI)

$ 1,833.0

8

Toyota Motor Corp.

Toyota City (JP)

$ 1,692.4

9

Sony Corp.

Tokyo (JP)

$ 1,337.7

10

Coca-Cola Co.

Atlanta (US)

$ 1,327.3



On the other hand the three biggest advertisers only spend about US$ 2 millions less than places four to ten together. Whereas money spent on advertising in traditional media comes from very diverse categories, companies offering computer hard- and software, peripherals or Internet services mainly pay for on-line advertisements.

Table: Top 10 Internet Advertisers 1998

(figures in millions of U.S. dollars)

Rank 1998

Advertiser

Internet Spending 1998

1998 - 1997 % Change

1

Microsoft Corp.

$ 34.9

9.4

2

IBM Corp.

$ 28.5

58.6

3

Compaq Computer Corp.

$ 16.2

169.8

4

General Motors Corp.

$ 12.7

84.8

5

Excite

$ 12.4

1.5

6

Infoseek Corp.

$ 9.3

22.3

7

AT&T Corp.

$ 9.3

43.5

8

Ford Motor Co.

$ 8.6

46.7

9

Hewlett-Packard Co.

$ 8.1

102.9

10

Barnes & Noble

$ 7.6

280.2



Source: Advertising Age

TEXTBLOCK 1/7 // URL: http://world-information.org/wio/infostructure/100437611652/100438657954
 
Commercial vs. Independent Content

Commercial media aim towards economies of scale and scope, with the goal to maximize profits. As advertising money usually is their primary source of revenue their content very often is attuned to meet the needs of advertisers and marketers. Information necessary for a citizen's participation in the public sphere usually only plays a minor role in their programming, as it does not comply with the demands of an economic system whose principal aim is the generation of profit. They also virtually always are structured in accord with and to help reinforce society's defining hierarchical social relationships, and are generally controlled by and controlling of other major social institutions, particularly corporations.

Independent content provider on the other hand mostly act on a non-profit basis and try to avoid dependence on corporate powers and the state. One of their main concerns is the critical observation of public interest issues. The central aim of independent content provider's activities usually is to bring aspects and standpoints neglected by the (commercial) mainstream media to the public and subvert society's defining hierarchical social relationships. Promoting public debate and an active civil society they engage in the organization of alert actions and information campaigns or create subversive art

TEXTBLOCK 2/7 // URL: http://world-information.org/wio/infostructure/100437611734/100438659280
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 3/7 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
The Concept of the Public Sphere

According to social critic and philosopher Jürgen Habermas "public sphere" first of all means "... a domain of our social life in which such a thing as public opinion can be formed. Access to the public sphere is open in principle to all citizens. A portion of the public sphere is constituted in every conversation in which private persons come together to form a public. They are then acting neither as business or professional people conducting their private affairs, nor as legal consociates subject to the legal regulations of a state bureaucracy and obligated to obedience. Citizens act as a public when they deal with matters of general interest without being subject to coercion; thus with the guarantee that they may assemble and unite freely, and express and publicize their opinions freely."

The system of the public sphere is extremely complex, consisting of spatial and communicational publics of different sizes, which can overlap, exclude and cover, but also mutually influence each other. Public sphere is not something that just happens, but also produced through social norms and rules, and channeled via the construction of spaces and the media. In the ideal situation the public sphere is transparent and accessible for all citizens, issues and opinions. For democratic societies the public sphere constitutes an extremely important element within the process of public opinion formation.

TEXTBLOCK 4/7 // URL: http://world-information.org/wio/infostructure/100437611795/100438658445
 
An Economic and therefore Governmental Issue

While the digital divide might bring up the idea that enterprises will be able to sell more and more computers during the next years another truth looks as if there was no hope for a certain percentage of the population to get out of their marginalization, their position of being "have nots".

Studies show that the issue of different colors of skin play a role in this, but more than "racial" issues it is income, age and education that decides about the have and have nots.

There exist ~ 103 million households in the USA.
~6 million do not even have telephone access. Why should they care about computers?

The digital divide cuts the world into centers and peripheries, not into nations, as it runs through the boarder between the North and the South as well as through nations.

http://www.digitaldivide.gov/
http://www.digitaldividenetwork.org/
http://www.pbs.org/digitaldivide/
http://news.cnet.com/news/0-1005-200-344552.html
http://racerelations.about.com/newsissues/racerelations/msubdigdivide.htm
http://www.techweek.com/articles/11-1-99/divide.htm
http://www.ntia.doc.gov/ntiahome/net2/falling.html

The most different institutions with various interests in their background work in that field; not rarely paid by governments, which are interested in inhabitants, connected to the net and economy.
see also: http://www.washington.edu/wto/digital/

Searching information about the digital divide one will find informations saying that it is growing all the time whereas other studies suggest the contrary, like this one
http://news.cnet.com/news/0-1005-200-341054.html

TEXTBLOCK 5/7 // URL: http://world-information.org/wio/infostructure/100437611730/100438659326
 
Steganography

Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms.
Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee).
In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son.

for further details see:
http://home.att.net/~tleary/
http://www.thur.de/ulf/stegano/
http://www2.prestel.co.uk/littleton/gm2_rw.htm

One kind of steganogram is digital watermarking:
Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too.

Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe.
But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development.

for further information see:
http://www.isse.gmu.edu/~njohnson/Steganography

TEXTBLOCK 6/7 // URL: http://world-information.org/wio/infostructure/100437611776/100438659021
 
Definition

During the last 20 years the old Immanuel Wallerstein-paradigm of center - periphery and semi-periphery found a new costume: ICTs. After Colonialism, Neo-Colonialism and Neoliberalism a new method of marginalization is emerging: the digital divide.

"Digital divide" describes the fact that the world can be divided into people who
do and people who do not have access to (or the education to handle with) modern information technologies, e.g. cellular telephone, television, Internet. This digital divide is concerning people all over the world, but as usually most of all people in the formerly so called third world countries and in rural areas suffer; the poor and less-educated suffer from that divide.
More than 80% of all computers with access to the Internet are situated in larger cities.

"The cost of the information today consists not so much of the creation of content, which should be the real value, but of the storage and efficient delivery of information, that is in essence the cost of paper, printing, transporting, warehousing and other physical distribution means, plus the cost of the personnel manpower needed to run these `extra' services ....Realizing an autonomous distributed networked society, which is the real essence of the Internet, will be the most critical issue for the success of the information and communication revolution of the coming century of millennium."
(Izumi Aizi)

for more information see:
http://www.whatis.com/digital_divide.htm

TEXTBLOCK 7/7 // URL: http://world-information.org/wio/infostructure/100437611730/100438659300
 
Calculator

Calculators are machines for automatically performing arithmetical operations and certain mathematical functions. Modern calculators are descendants of a digital arithmetic machine devised by Blaise Pascal in 1642. Later in the 17th century, Gottfried Wilhelm von Leibniz created a more advanced machine, and, especially in the late 19th century, inventors produced calculating machines that were smaller and smaller and less and less laborious to use.

INDEXCARD, 1/5
 
Moral rights

Authors of copyrighted works (besides economic rights) enjoy moral rights on the basis of which they have the right to claim their authorship and require that their names be indicated on the copies of the work and in connection with other uses thereof. Moral rights are generally inalienable and remain with the creator even after he has transferred his economic rights, although the author may waive their exercise.

INDEXCARD, 2/5
 
Cyborg manifesto

The full title of Dona Haraway's Cyborg Manifesto is "A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late Twentieth Century", published by Routledge, New York, in 1991. Online e excerpts of this classic are located at

http://www.stanford.edu/dept/HPS/Haraway/CyborgManifesto.html

http://www.stanford.edu/dept/HPS/Haraway/Cybo...
INDEXCARD, 3/5
 
Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks

This book gives a fascinating glimpse of the many documented attempts throughout history to develop effective means for long distance communications. Large-scale communication networks are not a twentieth-century phenomenon. The oldest attempts date back to millennia before Christ and include ingenious uses of homing pigeons, mirrors, flags, torches, and beacons. The first true nationwide data networks, however, were being built almost two hundred years ago. At the turn of the 18th century, well before the electromagnetic telegraph was invented, many countries in Europe already had fully operational data communications systems with altogether close to one thousand network stations. The book shows how the so-called information revolution started in 1794, with the design and construction of the first true telegraph network in France, Chappe's fixed optical network.

http://www.it.kth.se/docs/early_net/

INDEXCARD, 4/5
 
Roman smoke telegraph network, 150 A.D.

The Roman smoke signals network consisted of towers within visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling.

For a similar telegraph network in ancient Greece see Aeneas Tacitus' optical communication system.

INDEXCARD, 5/5