Timeline 1970-2000 AD

1971 IBM's work on the Lucifer cipher and the work of the NSA lead to the U.S. Data Encryption Standard (= DES)

1976 Whitfield Diffie and Martin Hellman publish their book New Directions in Cryptography, playing with the idea of public key cryptography

1977/78 the RSA algorithm is developed by Ron Rivest, Adi Shamir and Leonard M. Adleman and is published

1984 Congress passes Comprehensive Crime Control Act

- The Hacker Quarterly is founded

1986 Computer Fraud and Abuse Act is passed in the USA

- Electronic Communications Privacy Act

1987 Chicago prosecutors found Computer Fraud and Abuse Task Force

1988 U.S. Secret Service covertly videotapes a hacker convention

1989 NuPrometheus League distributes Apple Computer software

1990 - IDEA, using a 128-bit key, is supposed to replace DES

- Charles H. Bennett and Gilles Brassard publish their work on Quantum Cryptography

- Martin Luther King Day Crash strikes AT&T long-distance network nationwide


1991 PGP (= Pretty Good Privacy) is released as freeware on the Internet, soon becoming worldwide state of the art; its creator is Phil Zimmermann

- one of the first conferences for Computers, Freedom and Privacy takes place in San Francisco

- AT&T phone crash; New York City and various airports get affected

1993 the U.S. government announces to introduce the Clipper Chip, an idea that provokes many political discussions during the following years

1994 Ron Rivest releases another algorithm, the RC5, on the Internet

- the blowfish encryption algorithm, a 64-bit block cipher with a key-length up to 448 bits, is designed by Bruce Schneier

1990s work on quantum computer and quantum cryptography

- work on biometrics for authentication (finger prints, the iris, smells, etc.)

1996 France liberates its cryptography law: one now can use cryptography if registered

- OECD issues Cryptography Policy Guidelines; a paper calling for encryption exports-standards and unrestricted access to encryption products

1997 April European Commission issues Electronic Commerce Initiative, in favor of strong encryption

1997 June PGP 5.0 Freeware widely available for non-commercial use

1997 June 56-bit DES code cracked by a network of 14,000 computers

1997 August U.S. judge assesses encryption export regulations as violation of the First Amendment

1998 February foundation of Americans for Computer Privacy, a broad coalition in opposition to the U.S. cryptography policy

1998 March PGP announces plans to sell encryption products outside the USA

1998 April NSA issues a report about the risks of key recovery systems

1998 July DES code cracked in 56 hours by researchers in Silicon Valley

1998 October Finnish government agrees to unrestricted export of strong encryption

1999 January RSA Data Security, establishes worldwide distribution of encryption product outside the USA

- National Institute of Standards and Technologies announces that 56-bit DES is not safe compared to Triple DES

- 56-bit DES code is cracked in 22 hours and 15 minutes

1999 May 27 United Kingdom speaks out against key recovery

1999 Sept: the USA announce to stop the restriction of cryptography-exports

2000 as the German government wants to elaborate a cryptography-law, different organizations start a campaign against that law

- computer hackers do no longer only visit websites and change little details there but cause breakdowns of entire systems, producing big economic losses

for further information about the history of cryptography see:
http://www.clark.net/pub/cme/html/timeline.html
http://www.math.nmsu.edu/~crypto/Timeline.html
http://fly.hiwaay.net/~paul/cryptology/history.html
http://www.achiever.com/freehmpg/cryptology/hocryp.html
http://all.net/books/ip/Chap2-1.html
http://cryptome.org/ukpk-alt.htm
http://www.iwm.org.uk/online/enigma/eni-intro.htm
http://www.achiever.com/freehmpg/cryptology/cryptofr.html
http://www.cdt.org/crypto/milestones.shtml

for information about hacker's history see:
http://www.farcaster.com/sterling/chronology.htm:

TEXTBLOCK 1/26 // URL: http://world-information.org/wio/infostructure/100437611776/100438658960
 
Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 2/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
1500 - 1700 A.D.

1588
Agostino Ramelli's reading wheel

Agostino Ramelli designed a "reading wheel", which allowed browsing through a large number of documents without moving from one spot to another.

The device presented a large number of books - a small library - laid open on lecterns on a kind of ferry-wheel. It allowed skipping chapters and browsing through pages by turning the wheel to bring lectern after lectern before the eyes. Ramelli's reading wheel thus linked ideas and texts and reminds of today's browsing software used to navigate the World Wide Web.

1597
The first newspaper is printed in Europe.

TEXTBLOCK 3/26 // URL: http://world-information.org/wio/infostructure/100437611796/100438659704
 
What is the Internet?

Each definition of the Internet is a simplified statement and runs the risk of being outdated within a short time. What is usually referred to as the Internet is a network of thousands of computer networks (so called autonomous systems) run by governmental authorities, companies, and universities, etc. Generally speaking, every time a user connects to a computer networks, a new Internet is created. Technically speaking, the Internet is a wide area network (WAN) that may be connected to local area networks (LANs).

What constitutes the Internet is constantly changing. Certainly the state of the future Net will be different to the present one. Some years ago the Internet could still be described as a network of computer networks using a common communication protocol, the so-called IP protocol. Today, however, networks using other communication protocols are also connected to other networks via gateways.

Also, the Internet is not solely constituted by computers connected to other computers, because there are also point-of-sale terminals, cameras, robots, telescopes, cellular phones, TV sets and and an assortment of other hardware components that are connected to the Internet.

At the core of the Internet are so-called Internet exchanges, national backbone networks, regional networks, and local networks.

Since these networks are often privately owned, any description of the Internet as a public network is not an accurate. It is easier to say what the Internet is not than to say what it is. On 24 October, 1995 the U.S. Federal Networking Council made the following resolution concerning the definition of the term "Internet": "Internet" refers to the global information system that (i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons; (ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and (iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein." (http://www.fnc.gov/Internet_res.html)

What is generally and in a simplyfiying manner called the Internet, may be better referred to as the Matrix, a term introduced by science fiction writer William Gibson, as John S. Quarterman and Smoot Carl-Mitchell have proposed. The Matrix consists of all computer systems worldwide capable of exchanging E-Mail: of the USENET, corporate networks and proprietary networks owned by telecommunication and cable TV companies.

Strictly speaking, the Matrix is not a medium; it is a platform for resources: for media and services. The Matrix is mainly a very powerful means for making information easily accessible worldwide, for sending and receiving messages, videos, texts and audio files, for transferring funds and trading securities, for sharing resources, for collecting weather condition data, for trailing the movements of elephants, for playing games online, for video conferencing, for distance learning, for virtual exhibitions, for jamming with other musicians, for long distance ordering, for auctions, for tracking packaged goods, for doing business, for chatting, and for remote access of computers and devices as telescopes and robots remotely, e. g. The Internet is a wonderful tool for exchanging, retrieving, and storing data and sharing equipment over long distances and eventually real-time, if telecommunication infrastructure is reliable and of high quality.

For a comprehensive view of uses of the Matrix, especially the World Wide Web, see ""24 Hours in Cyberspace"

TEXTBLOCK 4/26 // URL: http://world-information.org/wio/infostructure/100437611791/100438659889
 
Znet

ZNet provides forum facilities for online discussion and chatting on various topics ranging from culture and ecology to international relations and economics. ZNet also publishes daily commentaries and maintains a Web-zine, which addresses current news and events as well as many other topics, trying to be provocative, informative and inspiring to its readers.

Strategies and Policies

Daily Commentaries: Znet's commentaries address current news and events, cultural happenings, and organizing efforts, providing context, critique, vision, and analysis, but also references to or reviews of broader ideas, new books, activism, the Internet, and other topics that strike the diverse participating authors as worthy of attention.

Forum System: Znet provides a private (and soon also a public) forum system. The fora are among others concerned with topics such as: activism, cultural, community/race/religion/ethnicity, ecology, economics/class, gender/kinship/sexuality, government/polity, international relations, ParEcon, vision/strategy and popular culture. Each forum has a set of threaded discussions, also the fora hosted by commentary writers like Chomsky, Ehrenreich, Cagan, Peters and Wise.

ZNet Daily WebZine: ZNet Daily WebZine offers commentaries in web format.

Z Education Online (planned): The Z Education Online site will provide instructionals and courses of diverse types as well as other university-like, education-aimed features.

TEXTBLOCK 5/26 // URL: http://world-information.org/wio/infostructure/100437611734/100438659288
 
Iris recognition

Iris recognition relies upon the fact that every individuals retina has a unique structure. The iris landscape is composed of a corona, crypts, filaments, freckles, pits radial furrows and striatations. Iris scanning is considered a particularly accurate identification technology because the characteristics of the iris do not change during a persons lifetime, and because there are several hundred variables in an iris which can be measured. In addition, iris scanning is fast: it does not take longer than one or two seconds.

These are characteristics which have made iris scanning an attractive technology for high-security applications such as prison surveillance. Iris technology is also used for online identification where it can substitute identification by password. As in other biometric technologies, the use of iris scanning for the protection of privacy is a two-edged sword. The prevention of identity theft applies horizontally but not vertically, i.e. in so far as the data retrieval that accompanies identification and the data body which is created in the process has nothing to do with identity theft.

TEXTBLOCK 6/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658334
 
Biometric technologies

In what follows there is a brief description of the principal biometric technologies, whose respective proponents - producers, research laboratories, think tanks - mostly tend to claim superiority over the others. A frequently used definition of "biometric" is that of a "unique, measurable characteristic or trait of a human being for automatically recognizing or verifying identity" (http://www.icsa.net/services/consortia/cbdc/bg/introduction.shtml); biometrics is the study and application of such measurable characteristics. In IT environments, biometrics are categorised as "security" technologies meant to limit access to information, places and other resources to a specific group of people.

All biometric technologies are made up of the same basic processes:

1. A sample of a biometric is first collected, then transformed into digital information and stored as the "biometric template" of the person in question.

2. At every new identification, a second sample is collected and its identity with the first one is examined.

3. If the two samples are identical, the persons identity is confirmed, i.e. the system knows who the person is.

This means that access to the facility or resource can be granted or denied. It also means that information about the persons behaviour and movements has been collected. The system now knows who passed a certain identification point at which time, at what distance from the previous time, and it can combine these data with others, thereby appropriating an individual's data body.

TEXTBLOCK 7/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658188
 
The "Corpse-Conversion Factory"-rumor

Supposedly the most famous British atrocity story concerning the Germans during World War I was the "Corpse-Conversion Factory"-rumor; it was said the Germans produced soap out of corpses. A story, which got so well believed that it was repeated for years - without a clear evidence of reality at that time. (Taylor, Munitions of the Mind, p.180)

TEXTBLOCK 8/26 // URL: http://world-information.org/wio/infostructure/100437611661/100438658427
 
Further Tools: Photography

Art has always contributed a lot to disinformation.
Many modern tools for disinformation are used in art/photography.
Harold D. Lasswell once stated that propaganda was cheaper than violence. Today this is no longer true. Technology has created new tools for propaganda and disinformation - and they are expensive. But by now our possibilities to manipulate pictures and stories have gone so far that it can get difficult to tell the difference between the original and a manipulation.

Trillions of photographs have been taken in the 20th century. Too many to look at, too many to control them and their use. A paradise for manipulation.
We have to keep in mind: There is the world, and there exist pictures of the world, which does not mean that both are the same thing. Photographs are not objective, because the photographer selects the part of the world which is becoming a picture. The rest is left out.

Some tools for manipulation of photography are:



Some of those are digital ways of manipulation, which helps to change pictures in many ways without showing the manipulation.

Pictures taken from the internet could be anything and come from anywhere. To proof the source is nearly impossible. Therefore scientists created on watermarks for pictures, which make it impossible to "steal" or manipulate a picture out of the net.

TEXTBLOCK 9/26 // URL: http://world-information.org/wio/infostructure/100437611661/100438658730
 
Late 1960s - Early 1970s: Third Generation Computers

One of the most important advances in the development of computer hardware in the late 1960s and early 1970s was the invention of the integrated circuit, a solid-state device containing hundreds of transistors, diodes, and resistors on a tiny silicon chip. It made possible the production of large-scale computers (mainframes) of higher operating speeds, capacity, and reliability at significantly lower costs.

Another type of computer developed at the time was the minicomputer. It profited from the progresses in microelectronics and was considerably smaller than the standard mainframe, but, for instance, powerful enough to control the instruments of an entire scientific laboratory. Furthermore operating systems, that allowed machines to run many different programs at once with a central program that monitored and coordinated the computer's memory, attained widespread use.

TEXTBLOCK 10/26 // URL: http://world-information.org/wio/infostructure/100437611663/100438659498
 
Biometric applications: surveillance

Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.

Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.

Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.

TEXTBLOCK 11/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
 
Challenges for Copyright by ICT: Introduction

Traditional copyright and the practice of paying royalties to the creators of intellectual property have emerged with the introduction of the printing press (1456). Therefore early copyright law has been tailored to the technology of print and the (re) production of works in analogue form. Over the centuries legislation concerning the protection of intellectual property has been adapted several times in order to respond to the technological changes in the production and distribution of information.

Yet again new technologies have altered the way of how (copyrighted) works are produced, copied, made obtainable and distributed. The emergence of global electronic networks and the increased availability of digitalized intellectual property confront existing copyright with a variety of questions and challenges. Although the combination of several types of works within one larger work or on one data carrier, and the digital format (although this may be a recent development it has been the object of detailed legal scrutiny), as well as networking (telephone and cable networks have been in use for a long time, although they do not permit interactivity) are nothing really new, the circumstance that recent technologies allow the presentation and storage of text, sound and visual information in digital form indeed is a novel fact. Like that the entire information can be generated, altered and used by and on one and the same device, irrespective of whether it is provided online or offline.


TEXTBLOCK 12/26 // URL: http://world-information.org/wio/infostructure/100437611725/100438659517
 
Palm recognition

In palm recognition a 3-dimensional image of the hand is collected and compared to the stored sample. Palm recognition devices are cumbersome artefacts (unlike fingerprint and iris recognition devices) but can absorb perform a great amount of identification acts in a short time. They are therefore preferably installed in situations where a large number of people is identified, as in airports.

TEXTBLOCK 13/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658375
 
Other biometric technologies

Other biometric technologies not specified here include ear recognition, signature dynamics, key stroke dynamics, vein pattern recognition, retinal scan, body odour recognition, and DNA recognition. These are technologies which are either in early stages of development or used in highly specialised and limited contexts.

TEXTBLOCK 14/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658399
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 15/26 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Internet, Intranets, Extranets, and Virtual Private Networks

With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are proprietary networks.

Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term "proprietary networks" into terms to be explained and speak of Intranets, Extranets, and Virtual Private Networks.

Cable TV networks and online services as Europe Online, America Online, and Microsoft Network are also proprietary networks. Although their services resemble Internet services, they offer an alternative telecommunication infrastructure with access to Internet services for their subscribers.
America Online is selling its service under the slogan "We organize the Web for you!" Such promises are more frightening than promising because "organizing" is increasingly equated with "filtering" of seemingly objectionable messages and "rating" of content. For more information on these issues, click here If you want to know more about the technical nature of computer networks, here is a link to the corresponding article in the Encyclopaedia Britannica.

Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Society for Worldwide Interbank Financial Telecommunication (SWIFT). According to SWIFT, in 1998 the average daily value of payments messages was estimated to be above U$ 2 trillion.

Electronic Communications Networks as Instinet force stock exchanges to redefine their positions in trading of equities. They offer faster trading at reduced costs and better prices on trades for brokers and institutional investors as mutual funds and pension funds. Last, but not least clients are not restricted to trading hours and can trade anonymously and directly, thereby bypassing stock exchanges.

TEXTBLOCK 16/26 // URL: http://world-information.org/wio/infostructure/100437611791/100438658384
 
Who owns the Internet and who is in charge?

The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet.
The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g.
Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers.
Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily.
Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed.
For a detailed report on Internet governance, click here.

TEXTBLOCK 17/26 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
 
Racism on the Internet

The internet can be regarded as a mirror of the variety of interests, attitudes and needs of human kind. Propaganda and disinformation in that way have to be part of it, whether they struggle for something good or evil. But the classifications do no longer function.
During the last years the internet opened up a new source for racism as it can be difficult to find the person who gave a certain message into the net. The anarchy of the internet provides racists with a lot of possibilities to reach people which they do not possess in other media, for legal and other reasons.

In the 1980s racist groups used mailboxes to communicate on an international level; the first ones to do so were supposedly the Ku Klux Klan and mailboxes like the Aryan Nations Liberty Net. In the meantime those mailboxes can be found in the internet. In 1997 about 600 extreme right websites were in the net, the number is growing, most of them coming from the USA. The shocking element is not the number of racist pages, because still it is a very small number compared to the variety of millions of pages one can find in this media, it is the evidence of intentional disinformation, the language and the hatred that makes it dangerous.
A complete network of anti-racist organizations, including a high number of websites are fighting against racism. For example:

http://motlc.wiesenthal.com/text/x32/xr3257.html

http://www.aranet.org/

http://www.freespeech.org/waronracism/files/allies.htm
http://www.nsdapmuseum.com
http://www.globalissues.org/HumanRights/Racism.asp

TEXTBLOCK 18/26 // URL: http://world-information.org/wio/infostructure/100437611661/100438658620
 
fingerprint identification

Although fingerprinting smacks of police techniques used long before the dawn of the information age, its digital successor finger scanning is the most widely used biometric technology. It relies on the fact that a fingerprint's uniqueness can be defined by analysing the so-called "minutiae" in somebody's fingerprint. Minutae include sweat pores, distance between ridges, bifurcations, etc. It is estimated that the likelihood of two individuals having the same fingerprint is less than one in a billion.

As an access control device, fingerprint scanning is particularly popular with military institutions, including the Pentagon, and military research facilities. Banks are also among the principal users of this technology, and there are efforts of major credit card companies such as Visa and MasterCard to incorporate this finger print recognition into the bank card environment.

Problems of inaccuracy resulting from oily, soiled or cracked skins, a major impediment in fingerprint technology, have recently been tackled by the development a contactless capturing device (http://www.ddsi-cpc.com) which translates the characteristics of a fingerprint into a digitised image.

As in other biometric technologies, fingerprint recognition is an area where the "criminal justice" market meets the "security market", yet another indication of civilian spheres becomes indistinguishable from the military. The utopia of a prisonless society seems to come within the reach of a technology capable of undermining freedom by an upward spiral driven by identification needs and identification technologies.

TEXTBLOCK 19/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658358
 
The 2nd Chechnya-War

In the summer of 1999 between 1.200 and 2.000 Muslim rebels from Chechnya fell into Dagestan. Rumors say that Russian soldiers closed their eyes pretending not to see anything. During the fightings that started soon, many persons got killed. The hole issue was blamed on Chechnya.
At that time there were rumors that there would be heavy bombing in Moscow in September. And there was. Those two things together brought back the hatred against the Chechnya rebels. The 2nd War between Russia and the Muslim country began. While the first war was lost at home, because the Russians, especially mothers, did not understand why their sons should fight against Chechnya, this time the atmosphere was completely different. In the cities 85% and all over Russia 65% of the Russian population agreed with the war. This time the war was a national issue, a legitimate defense.
The media emphasized this.
Alexander Zilin, a journalist, found out that the truth was far from the one presented in the media: First of all there was no evidence that the Moscow-bombings were organized by Chechnyans. On the contrary it is more than probable that the crimes were organized by a governmental institution for national security. The disinformation was part of the strategy to make the population support another war with Chechnya. The media were part of the story, maybe without knowing. They kept on the government's and army's side, showing only special and patriotic parts of the war. For example the number of dead Russian soldiers was held back.

The U.S.-behavior on this:
The USA would like to intervene but they are afraid of ruining the weak relation to Russia. For years the main topic of U.S.-politics has been the struggle against terrorism. Now Russia pretends to be fighting terrorism. How could it be criticized for that?

The reason for this war is rather cynical: it worked as a public relations-campaign for Vladimir Putin, candidate for the president's elections in. When Putin came into power as minister-president of Russia in August 1999, opinion polls gave him 2% for the elections in summer 2000. By the end of November he got already 46%! And finally he won. The public relations war worked well.
At the same time a propaganda-campaign against his rival Y. Primakov (98), formerly the most popular candidate, was spreading lies and bad rumors. Opinion-polls showed very fast that he had lost the elections because of this black propaganda, even before the elections took place.

TEXTBLOCK 20/26 // URL: http://world-information.org/wio/infostructure/100437611661/100438658639
 
Global hubs of the data body industry

While most data bunkers are restricted to particular areas or contexts, there are others which act as global data nodes. Companies such as EDS (Electronic Data Systems), Experian, First Data Corporation and Equifax operate globally and run giant databases containing personal information. They are the global hubs of the data body economy.

Company

Sales in USD billions

Size of client database in million datasets





Equifax





1,7





360





Experian





1,5





779





Fist Data Corporation





5,5





260





EDS





18,5









(not disclosed)

(Sales and database sizes, 1998)

The size of these data repositories is constantly growing, so it is only a matter of time when everybody living in the technologically saturated part of the world will be registered in one of these data bunkers.

Among these companies, EDS, founded by the former US presidential candidate Ross Perot, known for his right-wing views and direct language, is of particular importance. Not only is it the world's largest data body company, it is also secretive about the size of its client database - a figure disclosed by the other companies either in company publications or upon enquiry. After all, the size of such a data base makes a company more attractive for potential customers.

For many years, EDS has been surrounded by rumours concerning sinister involvement with intelligence agencies. Beyond the rumours, though, there are also facts. EDS has a special division for government services. EDS does business with all military agencies of the US, as well as law enforcement agencies, justice agencies, and many others. The company also maintains a separate division for military equipment In 1984, the company became a subsidiary of General Motors, itself a leading manufacturer of military and intelligence systems. EDS is listed by the Federation of American Scientist's intelligence resource program as contractor to US intelligence agencies, and prides itself, amongst other things, to respond to the "rise of the citizen as a consumer".

TEXTBLOCK 21/26 // URL: http://world-information.org/wio/infostructure/100437611761/100438659778
 
1940s - Early 1950s: First Generation Computers

Probably the most important contributor concerning the theoretical basis for the digital computers that were developed in the 1940s was Alan Turing, an English mathematician and logician. In 1936 he created the Turing machine, which was originally conceived as a mathematical tool that could infallibly recognize undecidable propositions. Although he instead proved that there cannot exist any universal method of determination, Turing's machine represented an idealized mathematical model that reduced the logical structure of any computing device to its essentials. His basic scheme of an input/output device, memory, and central processing unit became the basis for all subsequent digital computers.

The onset of the Second World War led to an increased funding for computer projects, which hastened technical progress, as governments sought to develop computers to exploit their potential strategic importance.

By 1941 the German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. Two years later the British completed a secret code-breaking computer called Colossus to decode German messages and by 1944 the Harvard engineer Howard H. Aiken had produced an all-electronic calculator, whose purpose was to create ballistic charts for the U.S. Navy.

Also spurred by the war the Electronic Numerical Integrator and Computer (ENIAC), a general-purpose computer, was produced by a partnership between the U.S. government and the University of Pennsylvania (1943). Consisting of 18.000 vacuum tubes, 70.000 resistors and 5 million soldered joints, the computer was such a massive piece of machinery (floor space: 1,000 square feet) that it consumed 160 kilowatts of electrical power, enough energy to dim lights in an entire section of a bigger town.

Concepts in computer design that remained central to computer engineering for the next 40 years were developed by the Hungarian-American mathematician John von Neumann in the mid-1940s. By 1945 he created the Electronic Discrete Variable Automatic Computer (EDVAC) with a memory to hold both a stored program as well as data. The key element of the Neumann architecture was the central processing unit (CPU), which allowed all computer functions to be coordinated through a single source. One of the first commercially available computers to take advantage of the development of the CPU was the UNIVAC I (1951). Both the U.S. Census bureau and General Electric owned UNIVACs (Universal Automatic Computer).

Characteristic for first generation computers was the fact, that instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different binary-coded program called a machine language that told it how to operate. Therefore computers were difficult to program and limited in versatility and speed. Another feature of early computers was that they used vacuum tubes and magnetic drums for storage.

TEXTBLOCK 22/26 // URL: http://world-information.org/wio/infostructure/100437611663/100438659338
 
Anonymity

"Freedom of anonymous speech is an essential component of free speech."

Ian Goldberg/David Wagner, TAZ Servers and the Rewebber Network: Enabling Anonymous Publishing on the World Wide Web, in: First Monday 3,4, 1999

Someone wants to hide one's identity, to remain anonymous, if s/he fears to be holding accountable for something, say, a publication, that is considered to be prohibited. Anonymous publishing has a long tradition in European history. Writers of erotic literature or pamphlets, e. g., preferred to use pseudonyms or publish anonymously. During the Enlightenment books as d'Alembert's and Diderot's famous Encyclopaedia were printed and distributed secretly. Today Book Locker, a company selling electronic books, renews this tradition by allowing to post writings anonymously, to publish without the threat of being perishing for it. Sometimes anonymity is a precondition for reporting human rights abuses. For example, investigative journalists and regime critics may rely on anonymity. But we do not have to look that far; even you might need or use anonymity sometimes, say, when you are a woman wanting to avoid sexual harassment in chat rooms.

The original design of the Net, as far as it is preserved, offers a relatively high degree of privacy, because due to the client-server model all what is known about you is a report of the machine from which information was, respectively is requested. But this design of the Net interferes with the wish of corporations to know you, even to know more about you than you want them to know. What is euphemistically called customer relationship management systems means the collection, compilation and analysis of personal information about you by others.

In 1997 America Online member Timothy McVeigh, a Navy employee, made his homosexuality publicly known in a short autobiographical sketch. Another Navy employee reading this sketch informed the Navy. America Online revealed McVeigh's identity to the Navy, who discharged McVeigh. As the consequence of a court ruling on that case, Timothy McVeigh was allowed to return to the Navy. Sometimes anonymity really matters.

On the Net you still have several possibilities to remain anonymous. You may visit web sites via an anonymizing service. You might use a Web mail account (given the personal information given to the web mail service provider is not true) or you might use an anonymous remailing service which strips off the headers of your mail to make it impossible to identify the sender and forward your message. Used in combination with encryption tools and technologies like FreeHaven or Publius anonymous messaging services provide a powerful tool for countering censorship.

In Germany, in 1515, printers had to swear not to print or distribute any publication bypassing the councilmen. Today repressive regimes, such as China and Burma, and democratic governments, such as the France and Great Britain, alike impose or already have imposed laws against anonymous publishing on the Net.

Anonymity might be used for abuses, that is true, but "the burden of proof rests with those who would seek to limit it. (Rob Kling, Ya-ching Lee, Al Teich, Mark S. Frankel, Assessing Anonymous Communication on the Internet: Policy Deliberations, in: The Information Society, 1999).

TEXTBLOCK 23/26 // URL: http://world-information.org/wio/infostructure/100437611742/100438659040
 
Face recognition

In order to be able to recognize a person, one commonly looks at this persons face, for it is there where the visual features which distinguish one person from another are concentrated. Eyes in particular seem to tell a story not only about who somebody is, but also about how that persons feel, where his / her attention is directed, etc. People who do not want to show who they are or what is going on inside of them must mask themselves. Consequently, face recognition is a kind of electronic unmasking.

"Real" face-to-face communication is a two-way process. Looking at somebody's face means exposing ones own face and allowing the other to look at oneself. It is a mutual process which is only suspended in extraordinary and voyeuristic situations. Looking at somebody without being looked at places the person who is visually exposed in a vulnerable position vis-à-vis the watcher.

In face recognition this extraordinary situation is normal. Looking at the machine, you only see yourself looking at the machine. Face biometrics are extracted anonymously and painlessly by a mask without a face.

Therefore the resistance against the mass appropriation of biometrical data through surveillance cameras is confronted with particular difficulties. The surveillance structure is largely invisible, it is not evident what the function of a particular camera is, nor whether it is connected to a face recognition system.

In a protest action against the face recognition specialist Visionics, the Surveillance Camera Players therefor adopted the strategy of re-masking: in front of the cameras, they perfomed the play "The Masque of the Red Death" an adaption of Edgar Allen Poe's classic short story by Art Toad.

According to Visionics, whose slogan is "enabling technology with a mass appeal", there are alrady 1.1 bn digitised face images stored on identification data banks world wide. When combined with wide area surveillance camera networks, face recognition is capable of creating a transparent social space that can be controlled by a depersonalised, undetected and unaccountable centre. It is a technology, of which the surveillance engeneers of sunken totalitarian regimes may have dreamt, and one that today is being adopted by democratic governments.

TEXTBLOCK 24/26 // URL: http://world-information.org/wio/infostructure/100437611729/100438658118
 
It is always the others

Disinformation is supposed to be something evil, something ethically not correct. And therefore we prefer to connect it to the past or to other political systems than the ones in the Western hemisphere. It is always the others who work with disinformation. The same is true for propaganda.
Even better, if we can refer it to the past: Adolf Hitler, supposedly one of the world's greatest and most horrible propagandists (together with his Reichsminister für Propaganda Josef Goebbels) did not invent modern propaganda either. It was the British example during World War I, the invention of modern propaganda, where he took his knowledge from. And it was Hitler's Reich, where (racist) propaganda and disinformation were developed to a perfect manipulation-tool in a way that the consequences are still working today.
A war loses support of the people, if it is getting lost. Therefore it is extremely important to launch a feeling of winning the war. Never give up emotions of victory. Governments know this and work hard on keeping the mood up. The Germans did a very hard job on that in the last months of World War II.
But the in the 1990s disinformation- and propaganda-business came back to life (if it ever had gone out of sight) through Iraq's invasion of Kuwait and the reactions by democratic states. After the war, reports made visible that not much had happened the way we had been told it had happened. Regarded like this the Gulf War was the end of the New World Order, a better and geographically broader democratic order, that had just pretended to having begun.

TEXTBLOCK 25/26 // URL: http://world-information.org/wio/infostructure/100437611661/100438658640
 
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights)

Another important multilateral treaty concerned with intellectual property rights is the TRIPS agreement, which was devised at the inauguration of the Uruguay Round negotiations of the WTO in January 1995. It sets minimum standards for the national protection of intellectual property rights and procedures as well as remedies for their enforcement (enforcement measures include the potential for trade sanctions against non-complying WTO members). The TRIPS agreement has been widely criticized for its stipulation that biological organisms be subject to intellectual property protection. In 1999, 44 nations considered it appropriate to treat plant varieties as intellectual property.

The complete TRIPS agreement can be found on: http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm

TEXTBLOCK 26/26 // URL: http://world-information.org/wio/infostructure/100437611725/100438659758
 
Internet Relay Chat (IRC)

IRC is a text-based chat system used for live discussions of groups.

For a history of IRC see Charles A. Gimon, IRC: The Net in Realtime, http://www.skypoint.com/~gimonca/irc2.html

http://www.skypoint.com/~gimonca/irc2.html
INDEXCARD, 1/27
 
Aeneas Tacticus

Supposedly his real name was Aeneas of Stymphalus. He was a Greek military scientist and cryptographer. He invented an optical system for communication similar to a telegraph: the water-clocks.

INDEXCARD, 2/27
 
John Dee

b. July 13, 1527, London, England
d. December 1608, Mortlake, Surrey

English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595.

INDEXCARD, 3/27
 
Artificial Intelligence

Artificial Intelligence is concerned with the simulation of human thinking and emotions in information technology. AI develops "intelligent systems" capable, for example, of learning and logical deduction. AI systems are used for creatively handling large amounts of data (as in data mining), as well as in natural speech processing and image recognition. AI is also used as to support decision taking in highly complex environments.
Yahoo AI sites: http://dir.yahoo.com/Science/Computer_Science/Artificial_Intelligence/
MIT AI lab: http://www.ai.mit.edu/


http://dir.yahoo.com/Science/Computer_Science...
http://www.ai.mit.edu/
INDEXCARD, 4/27
 
1996 WIPO Copyright Treaty (WCT)

The 1996 WIPO Copyright Treaty, which focused on taking steps to protect copyright "in the digital age" among other provisions 1) makes clear that computer programs are protected as literary works, 2) the contracting parties must protect databases that constitute intellectual creations, 3) affords authors with the new right of making their works "available to the public", 4) gives authors the exclusive right to authorize "any communication to the public of their works, by wire or wireless means ... in such a way that members of the public may access these works from a place and at a time individually chosen by them." and 5) requires the contracting states to protect anti-copying technology and copyright management information that is embedded in any work covered by the treaty. The WCT is available on: http://www.wipo.int/documents/en/diplconf/distrib/94dc.htm



http://www.wipo.int/documents/en/diplconf/dis...
INDEXCARD, 5/27
 
Machine language

Initially computer programmers had to write instructions in machine language. This coded language, which can be understood and executed directly by the computer without conversion or translation, consists of binary digits representing operation codes and memory addresses. Because it is made up of strings of 1s and 0s, machine language is difficult for humans to use.

INDEXCARD, 6/27
 
Cisco, Inc.

Being the worldwide leader in networking for the Internet, Cisco Systems is one of the most prominent companies of the Internet industry.

http://www.cisco.com

INDEXCARD, 7/27
 
Internet Protocol Number (IP Number)

Every computer using TCP/IP has a 32 bit-Internet address, an IP number. This number consists of a network identifier and of a host identifier. The network identifier is registered at and allocated by a Network Information Center (NIC), the host identifier is allocated by the local network administration.

IP numbers are divided into three classes. Class A is restricted for big-sized organizations, Class B to medium-sized ones as universities, and Class C is dedicated to small networks.

Because of the increasing number of networks worldwide, networks belonging together, as LANs forming a corporate network, are allocated a single IP number.

INDEXCARD, 8/27
 
Terrestrial antennas

Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks.

The implementation of the Wide Application Protocol (WAP) makes the wireless access to Internet services as E-Mail and even the World Wide Web via cellular phones convenient. Therefore microwave transmission systems become increasingly important.

INDEXCARD, 9/27
 
Next Generation Internet Program

A research and development program funded by the US government. Goal is the development of advanced networking technologies and applications requiring advanced networking with capabilities that are 100 to 1,000 times faster end-to-end than today's Internet.

http://www.ngi.gov

INDEXCARD, 10/27
 
First Amendment Handbook

The First Amendment to the US Constitution, though short, lists a number of rights. Only a handful of words refer to freedoms of speech and the press, but those words are of incalculable significance. To understand the current subtleties and controversies surrounding this right, check out this First Amendment site. This detailed handbook of legal information, mostly intended for journalists, should be of interest to anyone who reads or writes. For example, the chapter Invasion of Privacy shows the limits of First Amendment rights, and the balance between the rights of the individual and the rights of the public - or, more crudely, the balance of Tabloid vs. Celebrity. Each section is carefully emended with relevant legal decisions.

http://www.rcfp.org/handbook/viewpage.cgi

INDEXCARD, 11/27
 
DES

The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys.

for more information see:
http://www.britannica.com/bcom/eb/article/3/0,5716,117763+5,00.html
http://www.cryptography.com/des/

http://www.britannica.com/bcom/eb/article/3/0...
http://www.cryptography.com/des/
INDEXCARD, 12/27
 
WTO

An international organization designed to supervise and liberalize world trade. The WTO (World Trade Organization) is the successor to the General Agreement on Tariffs and Trade (GATT), which was created in 1947 and liberalized the world's trade over the next five decades. The WTO came into being on Jan. 1, 1995, with 104 countries as its founding members. The WTO is charged with policing member countries' adherence to all prior GATT agreements, including those of the last major GATT trade conference, the Uruguay Round (1986-94), at whose conclusion GATT had formally gone out of existence. The WTO is also responsible for negotiating and implementing new trade agreements. The WTO is governed by a Ministerial Conference, which meets every two years; a General Council, which implements the conference's policy decisions and is responsible for day-to-day administration; and a director-general, who is appointed by the Ministerial Conference. The WTO's headquarters are in Geneva, Switzerland.



INDEXCARD, 13/27
 
cryptology

also called "the study of code". It includes both, cryptography and cryptoanalysis

INDEXCARD, 14/27
 
Framing

Framing is the practice of creating a frame or window within a web page where the content of a different web page can be display. Usually when a link is clicked on, the new web page is presented with the reminders of the originating page.

INDEXCARD, 15/27
 
Bulletin Board Systems

A BBS (bulletin board system) is a computer that can be reached by computer modem dialing (you need to know the phone number) or, in some cases, by Telnet for the purpose of sharing or exchanging messages or other files. Some BBSs are devoted to specific interests; others offer a more general service. The definitive BBS List says that there are 40,000 BBSs worldwide.

Bulletin board systems originated and generally operate independently of the Internet.

Source: Whatis.com

INDEXCARD, 16/27
 
CIA

CIA's mission is to support the President, the National Security Council, and all officials who make and execute U.S. national security policy by: Providing accurate, comprehensive, and timely foreign intelligence on national security topics; Conducting counterintelligence activities, special activities, and other functions related to foreign intelligence and national security, as directed by the President. To accomplish its mission, the CIA engages in research, development, and deployment of high-leverage technology for intelligence purposes. As a separate agency, CIA serves as an independent source of analysis on topics of concern and works closely with the other organizations in the Intelligence Community to ensure that the intelligence consumer--whether Washington policymaker or battlefield commander--receives the adaequate intelligence information.

http://www.cia.gov

INDEXCARD, 17/27
 
IBM

IBM (International Business Machines Corporation) manufactures and develops cumputer hardware equipment, application and sysem software, and related equipment.

IBM produced the first PC (Personal Computer), and its decision to make Microsoft DOS the standard operating system initiated Microsoft's rise to global dominance in PC software.

Business indicators:

1999 Sales: $ 86,548 (+ 7,2 % from 1998)

Market capitalization: $ 181 bn

Employees: approx. 291,000

Corporate website: www.ibm.com

http://www.ibm.com/
INDEXCARD, 18/27
 
User tracking

User tracking is a generic term that covers all the techniques of monitoring the movements of a user on a web site. User tracking has become an essential component in online commerce, where no personal contact to customers is established, leaving companies with the predicament of not knowing who they are talking to. Some companies, such as Red Eye, Cyber Dialogue, and SAS offer complete technology packages for user tracking and data analysis to online businesses. Technologies include software solutions such as e-mine, e-discovery, or WebHound

Whenever user tracking is performed without the explicit agreement of the user, or without laying open which data are collected and what is done with them, considerable privacy concerns have been raised.

http://www.redeye.co.uk/
http://www.cyberdialogue.com/
http://www.sas.com/
http://www.spss.com/emine/
http://www.sas.com/solutions/e-discovery/inde...
http://www.sas.com/products/webhound/index.ht...
http://www.linuxcare.com.au/mbp/meantime/
INDEXCARD, 19/27
 
Royalties

Royalties refer to the payment made to the owners of certain types of rights by those who are permitted by the owners to exercise the rights. The rights concerned are literary, musical, and artistic copyright and patent rights in inventions and designs (as well as rights in mineral deposits, including oil and natural gas). The term originated from the fact that in Great Britain for centuries gold and silver mines were the property of the crown and such "royal" metals could be mined only if a payment ("royalty") were made to the crown.

INDEXCARD, 20/27
 
Gateway

A gateway is a computer supplying point-to-multipoint connections between computer networks.

INDEXCARD, 21/27
 
Adi Shamir

Adi Shamir was one of three persons in a team to invent the RSA public-key cryptosystem. The other two authors were Ron Rivest and Leonard M. Adleman.

INDEXCARD, 22/27
 
Bill Clinton

William J. Clinton (* 1946) studied law at Yale University, then taught at the University of Arkansas. He was elected Arkansas attorney general in 1976 and served as a governor until 1992. That year he became U.S.-President, the first democratic President after a row of Republicans. His sexual affairs not only cost him nearly his career but he also had to distract from his private affairs: he thought of fighting another war against Saddam Hussein in February 1999. Short afterwards he had a more interesting enemy, Slobodan Milosevic - and the NATO was most willing to fight with him.

For more information see: http://www.whitehouse.gov/WH/glimpse/presidents/html/bc42.html

http://www.whitehouse.gov/WH/glimpse/presiden...
INDEXCARD, 23/27
 
File Transfer Protocol (FTP)

FTP enables the transfer of files (text, image, video, sound) to and from other remote computers connected to the Internet.

INDEXCARD, 24/27
 
Robot

Robot relates to any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner. The term is derived from the Czech word robota, meaning "forced labor." Modern use of the term stems from the play R.U.R., written in 1920 by the Czech author Karel Capek, which depicts society as having become dependent on mechanical workers called robots that are capable of doing any kind of mental or physical work. Modern robot devices descend through two distinct lines of development--the early automation, essentially mechanical toys, and the successive innovations and refinements introduced in the development of industrial machinery.

INDEXCARD, 25/27
 
Whitfield Diffie

Whitfield Diffie is an Engineer at Sun Microsystems and co-author of Privacy on the Line (MIT Press) in 1998 with Susan Landau. In 1976 Diffie and Martin Hellman developed public key cryptography, a system to send information without leaving it open to be read by everyone.

INDEXCARD, 26/27
 
Core copyright industries

Those encompass the industries that create copyrighted works as their primary product. These industries include the motion picture industry (television, theatrical, and home video), the recording industry (records, tapes and CDs), the music publishing industry, the book, journal and newspaper publishing industry, and the computer software industry (including data processing, business applications and interactive entertainment software on all platforms), legitimate theater, advertising, and the radio, television and cable broadcasting industries.

INDEXCARD, 27/27