Epilogue As scientists are working hard on a quantum computer and also on quantum cryptography one can imagine that another revolution in the study of encryption has to be expected within the next years. By then today's hardware and software tools will look extraordinary dull. At the moment it is impossible to foresee the effects on cryptography and democratic developments by those means; the best and the worst can be expected at the same time. A certain ration of pessimism and prosecution mania are probably the right mixture of emotions about those tendencies, as the idea of big brother has come into existence long ago. At the same time it will - in part - be a decision of the people to let science work against them or not. Acceleration of data-transmission calls for an acceleration of encryption-methods. And this again falls back on us, on an acceleration of daily life, blurring the private and the public for another time. We live in an intersection, job and private life growing together. Cryptography cannot help us in that case. The privacy in our mind, the virtuality of all private and public lies in the field of democracy, or at least what is - by connection to the Human Rights - regarded as democracy. |
|
Cryptography's Terms and background "All nature is merely a cipher and a secret writing." Blaise de Vigenère In the (dis-)information age getting information but at the same time excluding others from it is part of a power-game (keeping the other uneducated). The reason for it eventually has found an argument called security. Compared to the frequency of its presence in articles, the news and political speeches security seems to be one of the most popular words of the 90's. It must be a long time ago when that word was only used for and by the military and the police. Today one can find it as part of every political issue. Even development assistance and nutrition programs consider it part of its work. The so-called but also real need for information security is widespread and concerning everybody, whether someone uses information technology or not. In any case information about individuals is moving globally; mostly sensitive information like about bank records, insurance and medical data, credit card transactions, and much much more. Any kind of personal or business communication, including telephone conversations, fax messages, and of course e-mail is concerned. Not to forget further financial transactions and business information. Almost every aspect of modern life is affected. We want to communicate with everybody - but do not want anybody to know. Whereas the market already depends on the electronic flow of information and the digital tools get faster and more sophisticated all the time, the rise of privacy and security concerns have to be stated as well. With the increase of digital communication its vulnerability is increasing just as fast. And there exist two (or three) elements competing and giving the term digital security a rather drastic bitter taste: this is on the one hand the growing possibility for criminals to use modern technology not only to hide their source and work secretly but also to manipulate financial and other transfers. On the other hand there are the governments of many states telling the population that they need access to any kind of data to keep control against those criminals. And finally there are those people, living between enlightening security gaps and at the same time harming other private people's actions with their work: computer hackers. While the potential of global information is regarded as endless, it is those elements that reduce it. There is no definite solution, but at least some tools have been developed to improve the situation: cryptography, the freedom to encode those data that one does not want to be known by everybody, and give a possibility to decode them to those who shall know the data. During the last 80 years cryptography has changed from a mere political into a private, economic but still political tool: at the same time it was necessary to improve the tools, eventually based on mathematics. Hence generally cryptography is regarded as something very complicated. And in many ways this is true as the modern ways of enciphering are all about mathematics. "Crypto is not mathematics, but crypto can be highly mathematical, crypto can use mathematics, but good crypto can be done without a great reliance on complex mathematics." (W.T. Shaw) For an introduction into cryptography and the mathematical tasks see: |
|
1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Extract of Disney’s Content Production and Distribution Holdings Although the traditional media companies first steps into the digital sphere were fairly clumsy, they have quickly learned from their mistakes and continued to enlarge their Internet presence. During the last years many of the smaller players in the field of digital media have been driven out of competition by the huge media conglomerates. This mainly is a result of the advantages that the commercial media giants have over their less powerful counterparts:
Commercial media companies have close and long ties to advertisers, which enables them to seize most of these revenues. |
|
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights) Another important multilateral treaty concerned with The complete TRIPS agreement can be found on: |
|
Centralization of the Content Industry Following the 1980s a sweeping restructuring of commercial media power has happened. While some firms have grown through expansion others extended through mergers and acquisitions. Examples are In recent years those developments have led to the rise of transnational media giants, resulting in the domination of the global media system by about ten huge conglomerates. These have interests in numerous media industries, ranging from film production, magazines, newspapers, book publishing and recorded music to TV and radio channels and networks, but also include retail stores, amusement parks and digital media products. Behind these firms are about three or four dozen smaller media companies, which primarily engage in local, national or niche markets. In short, the overwhelming majority of the world's content production facilities and distribution channels lies in the hands of approximately fifty enterprises. |
|
History: Communist Tradition Following the communist revolutions of the 20th century all "means of production" became the property of the state as representative of "the masses". Private property ceased to exist. While moral rights of the creator were recognized and economic rights acknowledged with a one-time cash award, all subsequent rights reverted to the state. With the transformation of many communist countries to a market system most of them have now introduced laws establishing markets in intellectual property rights. Still the high rate of piracy reflects a certain lack of legal tradition. |
|
AOL Time Warner The largest media conglomerate in the world, Time Warner resulted from the merger of the publisher Time Inc. and the media company Turner Broadcasting Systems, Inc. in 1996. Time Inc. founded in 1922 primarily concentrated on magazines and books and in the 1950s moved into the broadcasting and entertainment industry, but in the 1970s announced that it was selling its broadcasting holdings and concentrating on cable television. In 1989 Time Inc. merged with Warner Communications Inc., which besides being a major motion-picture and television studio, was also one of the biggest U.S. music recordings producers and cable-television operators. In January 2000 Time Warner merged with AOL (America Online) in a US$ 243.3 billion deal. Although AOL so far generated far less profit and turnover than Time Warner its quotation on the stock exchange was clearly higher, making Time Warner the junior partner (45 percent) in the new company. Through its merger with AOL, which is a major player in the online-business and owns several Internet-services like Compuserve, Netscape and Netcenter, the new media conglomerate could significantly enlarge its online presence and also complement its traditional media activities. |
|
More and more, faster and faster, but... Since the invention of appropriate means and technologies, communication no longer requires face-to-face meetings. From writing and reading to using computers, expanding and exhausting one's possibilities to communicate relies more and more on the application of skills we have to learn. With the increasing importance of communication technologies, learning to apply them properly becomes a kind of rite of passage. A Small World From the very beginning - the first Sumerian pictographs on clay tablets - to today's state of the art technologies - broadband communication via Since the invention of the electrical telegraph, but especially with today's growing digital communication networks, every location on earth seems to be close, however distant it may be, and also time no longer remains a significant dimension. Threatened Cultural Memory More and more information is transmitted and produced faster and faster, but the shelf life of information becomes more and more fragile. For more than 4500 years Sumerian pictographs written on clay tablets remained intact, but newspapers and books, printed some decades ago, crumble into pieces; film reels, video tapes and cassettes corrode. Digitalization of information is not a cure; on the contrary it even intensifies the danger of destroying cultural heritage. Data increasingly requires specific software and hardware, but to regularly convert all available digitized information is an unexecutable task. Compared to the longevity of pictographs on clay tablets, digitized information is produced for instant one-time use. The increasing production and processing of information causes a problem hitherto unknown: the loss of our cultural memory. For further information see For another history of communication systems see |
|
Fiber-optic cable networks Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Copper wires will not come out of use in the foreseeable future because of technologies as For technical information from the Encyclopaedia Britannica on telecommunication cables, click An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the For maps of fiber-optic cable networks see the website of |
|
Enigma Device used by the German military command to encode strategic messages before and during World War II. The Enigma code was broken by a British intelligence system known as Ultra. |
|
Writing Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets are used for administrative purposes. As an instrument for the administrative bodies of early empires, who began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to a few. Being more or less separated tasks, writing and calculating converge in today's computers. Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China. |
|
Royalties Royalties refer to the payment made to the owners of certain types of rights by those who are permitted by the owners to exercise the rights. The |
|
Division of labor The term refers to the separation of a work process into a number of tasks, with each task performed by a separate person or group of persons. It is most often applied to |
|
William Frederick Friedman Friedman is considered the father of U.S.-American cryptoanalysis - he also was the one to start using this term. |
|
Royal Dutch/Shell Group One of the world's largest corporate entities in sales, consisting of companies in more than 100 countries, whose shares are owned by NV Koninklijke Nederlandsche Petroleum Maatschappij (Royal Dutch Petroleum Company Ltd.) of The Hague and by the "Shell" Transport and Trading Company, PLC, of London. Below these two parent companies are two holding companies, Shell Petroleum NV and the Shell Petroleum Company Limited, whose shares are owned 60 percent by Royal Dutch and 40 percent by "Shell" Transport and Trading. The holding companies, in turn, hold shares in and administer the subsidiary service companies and operating companies around the world, which engage in oil, petrochemical, and associated industries, from research and exploration to production and marketing. Several companies also deal in metals, nuclear energy, solar energy, coal, and consumer products. |
|
George Bush b. June 12, 1924 41st President of the United States. In 1954, George Bush co-founded and became the president of Zapata Offshore Company. By 1964, he became chairman of the Republican Party of Harris County. That same year, he ran for the U.S. Senate, but was defeated in the Democratic landslide. Bush had better luck in the election of 1966, when he became the first Republican ever to represent Houston in Texas. Presidents Nixon and Ford selected Bush for a series of high-profile appointments: Ambassador to the United Nations in 1971, Chairman of the Republican National Committee in 1973, envoy to China in 1974 and Director of Central Intelligence in 1976. When Jimmy Carter was elected President in 1976, he appointed a new Director and George Bush returned to private life. In 1980, Bush made his own run for the Presidency. George Bush sought the Presidency again in 1988, and won the Republican nomination over a large field of candidates. His election that November was a decisive one, though not the landslide he and Reagan had enjoyed in 1984. |
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|