Virtual cartels; mergers

In parallel to the deregulation of markets, there has been a trend towards large-scale mergers which ridicules dreams of increased competition.

Recent mega-mergers and acquisitions include

SBC Communications - Ameritech, $ 72,3 bn

Bell Atlantic - GTE, $ 71,3

AT&T - Media One, $ 63,1

AOL - Time Warner, $ 165 bn

MCI Worldcom - Spring, $ 129 bn

The total value of all major mergers since the beginnings of the 1990s has been 20 trillion Dollars, 2,5 times the size of the USA's GIP.

The AOL- Time Warner reflects a trend which can be observed everywhere: the convergence of the ICT and the content industries. This represents the ultimate advance in complete market domination, and a alarming threat to independent content.

"Is TIME going to write something negative about AOL? Will AOL be able to offer anything other than CNN sources? Is the Net becoming as silly and unbearable as television?"

(Detlev Borchers, journalist)

TEXTBLOCK 1/15 // URL: http://world-information.org/wio/infostructure/100437611709/100438658959
 
Atrocity Stories

Atrocity stories are nothing else than lies; the two words "atrocity stories" simply pretend to be more diplomatic.
The purpose is to destroy an image of the enemy, to create a new one, mostly a bad one. The story creating the image is not necessarily made up completely. It can also be a changed into a certain variable direction.
The most important thing about atrocity stories is to follow the line of possibility. Even if the whole story is made up it must be probable or at least possible, following rumors. Most successful might it be if a rumor is spread on purpose, some time before the atrocity story is launched, because as soon as something seems to be familiar, it is easier to believe it.

TEXTBLOCK 2/15 // URL: http://world-information.org/wio/infostructure/100437611661/100438658524
 
Challenges for Copyright by ICT: Digital Content Providers

Providers of digital information might be confronted with copyright related problems when using some of the special features of hypertext media like frames and hyperlinks (which both use third party content available on the Internet to enhance a webpage or CD ROM), or operate a search engine or online directory on their website.

Framing

Frames are often used to help define, and navigate within, a content provider's website. Still, when they are used to present (copyrighted) third party material from other sites issues of passing off and misleading or deceptive conduct, as well as copyright infringement, immediately arise.

Hyperlinking

It is generally held that the mere creation of a hyperlink does not, of itself, infringe copyright as usually the words indicating a link or the displayed URL are unlikely to be considered a "work". Nevertheless if a link is clicked on the users browser will download a full copy of the material at the linked address creating a copy in the RAM of his computer courtesy of the address supplied by the party that published the link. Although it is widely agreed that the permission to download material over the link must be part of an implied license granted by the person who has made the material available on the web in the first place, the scope of this implied license is still the subject of debate. Another option that has been discussed is to consider linking fair use.

Furthermore hyperlinks, and other "information location tools", like online directories or search engines could cause their operators trouble if they refer or link users to a site that contains infringing material. In this case it is yet unclear whether providers can be held liable for infringement.

TEXTBLOCK 3/15 // URL: http://world-information.org/wio/infostructure/100437611725/100438659590
 
Databody convergence

In the phrase "the rise of the citizen as a consumer", to be found on the EDS website, the cardinal political problem posed by the databody industry is summarised: the convergence of commercial and political interest in the data body business, the convergence of bureaucratic and commercial data bodies, the erosion of privacy, and the consequent undermining of democratic politics by private business interest.

When the citizen becomes a consumer, the state must become a business. In the data body business, the key word behind this new identity of government is "outsourcing". Functions, that are not considered core functions of government activity are put into the hands of private contractors.

There have long been instances where privately owned data companies, e.g. credit card companies, are allowed access to public records, e.g. public registries or electoral rolls. For example, in a normal credit card transaction, credit card companies have had access to public records in order to verify identity of a customer. For example, in the UK citizen's personal data stored on the Electoral Roll have been used for commercial purposes for a long time. The new British Data Protection Act now allows people to "opt out" of this kind of commercialisation - a legislation that has prompted protests on the part of the data industry: Experian has claimed to lose LST 500 mn as a consequence of this restriction - a figure that, even if exaggerated, may help to understand what the value of personal data actually is.

While this may serve as an example of an increased public awareness of privacy issues, the trend towards outsourcing seems to lead to a complete breakdown of the barriers between commercial and public use of personal data. This trend can be summarised by the term "outsourcing" of government functions.

Governments increasingly outsource work that is not considered core function of government, e.g. cooking meals in hospitals or mowing lawns in public parks. Such peripheral activities marked a first step of outsourcing. In a further step, governmental functions were divided between executive and judgemental functions, and executive functions increasingly entrusted to private agencies. For these agencies to be able to carry out the work assigned to them, the need data. Data that one was stored in public places, and whose handling was therefore subject to democratic accountability. Outsourcing has produced gains in efficiency, and a decrease of accountability. Outsourced data are less secure, what use they are put to is difficult to control.

The world's largest data corporation, EDS, is also among the foremost outsourcing companies. In an article about EDS' involvement in government outsourcing in Britain, Simon Davies shows how the general trend towards outsourcing combined with advances in computer technology allow companies EDS, outside of any public accountability, to create something like blueprints for the societies of the 21st century. But the problem of accountability is not the only one to be considered in this context. As Davies argues, the data business is taking own its own momentum "a ruthless company could easily hold a government to ransom". As the links between government agencies and citizens thin out, however, the links among the various agencies might increase. Linking the various government information systems would amount to further increase in efficiency, and a further undermining of democracy. The latter, after all, relies upon the separation of powers - matching government information systems would therefore pave the way to a kind of electronic totalitarianism that has little to do with the ideological bent of George Orwell's 1984 vision, but operates on purely technocratic principles.

Technically the linking of different systems is already possible. It would also create more efficiency, which means generate more income. The question, then, whether democracy concerns will prevent it from happening is one that is capable of creating

But what the EDS example shows is something that applies everywhere, and that is that the data industry is whether by intention or whether by default, a project with profound political implications. The current that drives the global economy deeper and deeper into becoming a global data body economy may be too strong to be stopped by conventional means.

However, the convergence of political and economic data bodies also has technological roots. The problem is that politically motivated surveillance and economically motivated data collection are located in the same area of information and communication technologies. For example, monitoring internet use requires more or less the same technical equipment whether done for political or economic purposes. Data mining and data warehousing techniques are almost the same. Creating transparency of citizens and customers is therefore a common objective of intelligence services and the data body industry. Given that data are exchanged in electronic networks, a compatibility among the various systems is essential. This is another factor that encourages "leaks" between state-run intelligence networks and the private data body business. And finally, given the secretive nature of state intelligence and commercial data capturing , there is little transparency. Both structures occupy an opaque zone.

TEXTBLOCK 4/15 // URL: http://world-information.org/wio/infostructure/100437611761/100438659769
 
Challenges for Copyright by ICT: Copyright Owners

The main concern of copyright owners as the (in terms of income generation) profiteers of intellectual property protection is the facilitation of pirate activities in digital environments.

Reproduction and Distribution

Unlike copies of works made using analog copiers (photocopy machines, video recorders etc.) digital information can be reproduced extremely fast, at low cost and without any loss in quality. Since each copy is a perfect copy, no quality-related limits inhibit pirates from making as many copies as they please, and recipients of these copies have no incentive to return to authorized sources to get another qualitatively equal product. Additionally the costs of making one extra copy of intellectual property online are insignificant, as are the distribution costs if the copy is moved to the end user over the Internet.

Control and Manipulation

In cross-border, global data networks it is almost impossible to control the exploitation of protected works. Particularly the use of anonymous remailers and other existing technologies complicates the persecution of pirates. Also digital files are especially vulnerable to manipulation, of the work itself, and of the (in some cases) therein-embedded copyright management information.

TEXTBLOCK 5/15 // URL: http://world-information.org/wio/infostructure/100437611725/100438659526
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 6/15 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Feeding the data body

TEXTBLOCK 7/15 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
 
Virtual body and data body



The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world.

But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the Critical Art Ensemble observe in their book Flesh Machine, the data body is the "fascist sibling" of the virtual body; it is " a much more highly developed virtual form, and one that exists in complete service to the corporate and police state."

The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question.

TEXTBLOCK 8/15 // URL: http://world-information.org/wio/infostructure/100437611761/100438659695
 
Legal Protection: European Union

Within the EU's goal of establishing a European single market also intellectual property rights are of significance. Therefore the European Commission aims at the harmonization of the respective national laws of the EU member states and for a generally more effective protection of intellectual property on an international level. Over the years it has adopted a variety of Conventions and Directives concerned with different aspects of the protection of industrial property as well as copyright and neighboring rights.

An overview of EU activities relating to intellectual property protection is available on the website of the European Commission (DG Internal Market): http://www.europa.eu.int/comm/internal_market/en/intprop/intprop/index.htm

TEXTBLOCK 9/15 // URL: http://world-information.org/wio/infostructure/100437611725/100438659574
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 10/15 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Product Placement

With television still being very popular, commercial entertainment has transferred the concept of soap operas onto the Web. The first of this new species of "Cybersoaps" was "The Spot", a story about the ups and downs of an American commune. The Spot not only within short time attracted a large audience, but also pioneered in the field of online product placement. Besides Sony banners, the companies logo is also placed on nearly every electronic product appearing in the story. Appearing as a site for light entertainment, The Spots main goal is to make the name Sony and its product range well known within the target audience.

TEXTBLOCK 11/15 // URL: http://world-information.org/wio/infostructure/100437611652/100438658026
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 12/15 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
Economic structure; transparent customers

Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people.

User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying.

"Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent."

(David Sobel, Electronic Privacy Information Center)

TEXTBLOCK 13/15 // URL: http://world-information.org/wio/infostructure/100437611726/100438658925
 
What is the Internet?

Each definition of the Internet is a simplified statement and runs the risk of being outdated within a short time. What is usually referred to as the Internet is a network of thousands of computer networks (so called autonomous systems) run by governmental authorities, companies, and universities, etc. Generally speaking, every time a user connects to a computer networks, a new Internet is created. Technically speaking, the Internet is a wide area network (WAN) that may be connected to local area networks (LANs).

What constitutes the Internet is constantly changing. Certainly the state of the future Net will be different to the present one. Some years ago the Internet could still be described as a network of computer networks using a common communication protocol, the so-called IP protocol. Today, however, networks using other communication protocols are also connected to other networks via gateways.

Also, the Internet is not solely constituted by computers connected to other computers, because there are also point-of-sale terminals, cameras, robots, telescopes, cellular phones, TV sets and and an assortment of other hardware components that are connected to the Internet.

At the core of the Internet are so-called Internet exchanges, national backbone networks, regional networks, and local networks.

Since these networks are often privately owned, any description of the Internet as a public network is not an accurate. It is easier to say what the Internet is not than to say what it is. On 24 October, 1995 the U.S. Federal Networking Council made the following resolution concerning the definition of the term "Internet": "Internet" refers to the global information system that (i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons; (ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and (iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein." (http://www.fnc.gov/Internet_res.html)

What is generally and in a simplyfiying manner called the Internet, may be better referred to as the Matrix, a term introduced by science fiction writer William Gibson, as John S. Quarterman and Smoot Carl-Mitchell have proposed. The Matrix consists of all computer systems worldwide capable of exchanging E-Mail: of the USENET, corporate networks and proprietary networks owned by telecommunication and cable TV companies.

Strictly speaking, the Matrix is not a medium; it is a platform for resources: for media and services. The Matrix is mainly a very powerful means for making information easily accessible worldwide, for sending and receiving messages, videos, texts and audio files, for transferring funds and trading securities, for sharing resources, for collecting weather condition data, for trailing the movements of elephants, for playing games online, for video conferencing, for distance learning, for virtual exhibitions, for jamming with other musicians, for long distance ordering, for auctions, for tracking packaged goods, for doing business, for chatting, and for remote access of computers and devices as telescopes and robots remotely, e. g. The Internet is a wonderful tool for exchanging, retrieving, and storing data and sharing equipment over long distances and eventually real-time, if telecommunication infrastructure is reliable and of high quality.

For a comprehensive view of uses of the Matrix, especially the World Wide Web, see ""24 Hours in Cyberspace"

TEXTBLOCK 14/15 // URL: http://world-information.org/wio/infostructure/100437611791/100438659889
 
History: Communist Tradition

Following the communist revolutions of the 20th century all "means of production" became the property of the state as representative of "the masses". Private property ceased to exist. While moral rights of the creator were recognized and economic rights acknowledged with a one-time cash award, all subsequent rights reverted to the state.

With the transformation of many communist countries to a market system most of them have now introduced laws establishing markets in intellectual property rights. Still the high rate of piracy reflects a certain lack of legal tradition.

TEXTBLOCK 15/15 // URL: http://world-information.org/wio/infostructure/100437611725/100438659483
 
German Bundeswehr

The German contribution to the Western defence system, apart from playing host and contributing to the continued presence of allied troops on its soil, takes the form of its combined arm of defence known as the Federal Armed Forces (Bundeswehr). Constituting the largest contingent of NATO troops in Europe, the armed forces are divided into an army, navy, and air force. From its inception it was envisioned as a "citizens' " defence force, decisively under civilian control through the Bundestag, and its officers and soldiers trained to be mindful of the role of the military in a democracy. Conscription for males is universal, the military liability beginning at 18 and ending at 45 years of age.

INDEXCARD, 1/16
 
Server

A server is program, not a computer, as it sometimes said, dedicated to store files, manage printers and network traffic, or process database queries.

Web sites, the nodes of the World Wide Web (WWW), e.g., are stored on servers.

INDEXCARD, 2/16
 
Internet Relay Chat (IRC)

IRC is a text-based chat system used for live discussions of groups.

For a history of IRC see Charles A. Gimon, IRC: The Net in Realtime, http://www.skypoint.com/~gimonca/irc2.html

http://www.skypoint.com/~gimonca/irc2.html
INDEXCARD, 3/16
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 4/16
 
Alexander Graham Bell

b., March 3, 1847, Edinburgh

d. Aug. 2, 1922, Beinn Bhreagh, Cape Breton Island, Nova Scotia, Canada

American audiologist and inventor wrongly remembered for having invented the telephone in 1876. Although Bell introduced the first commercial application of the telephone, in fact a German teacher called Reiss invented it.

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/1/0,5716,15411+1+15220,00.html

INDEXCARD, 5/16
 
Galileo Galilee

Galileo Galilee (1564-1642), the Italian Mathematician and Physicist is called the father of Enlightenment. He proofed the laws of the free fall, improved the technique for the telescope and so on. Galilee is still famous for his fights against the Catholic Church. He published his writings in Italian instead of writing in Latin. Like this, everybody could understand him, which made him popular. As he did not stop talking about the world as a ball (the Heliocentric World System) instead of a disk, the Inquisition put him on trial twice and forbid him to go on working on his experiments.

INDEXCARD, 6/16
 
Agostino Ramelli's reading wheel, 1588

Agostino Ramelli designed a "reading wheel" which allowed browsing through a large number of documents without moving from one spot.

Presenting a large number of books, a small library, laid open on lecterns on a kind of ferry-wheel, allowing us to skip chapters and to browse through pages by turning the wheel to bring lectern after lectern before our eyes, thus linking ideas and texts together, Ramelli's reading wheel reminds of today's browsing software used to navigate the World Wide Web.

INDEXCARD, 7/16
 
Caching

Caching is a mechanism that attempts to decrease the time it takes to retrieve data by storing a copy at a closer location.

INDEXCARD, 8/16
 
Xerxes

Xerxes (~519-465 BC) was Persian King from 485-465 BC. He led his Army against the Greek but finally was defeated. He was the father of Alexander the Great.

INDEXCARD, 9/16
 
Intellectual property

Intellectual property, very generally, relates to the output that result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) industrial property (inventions, marks, industrial designs, unfair competition and geographical indications), and 2) copyright. The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products.

INDEXCARD, 10/16
 
Enochian alphabet

Also "Angelic" language. Archaic language alphabet composed of 21 letters, discovered by John Dee and his partner Edward Kelley. It has its own grammar and syntax, but only a small sample of it has ever been translated to English.

INDEXCARD, 11/16
 
International Standardization Organization

ISO (International Organization for Standardization), founded in 1946, is a worldwide federation of national standards bodies from some 100 countries, one from each country. Among the standards it fosters is Open Systems Interconnection (OSI), a universal reference model for communication protocols. Many countries have national standards organizations that participate in and contribute to ISO standards making.

http://www.iso.ch

Source: Whatis.com

http://www.iso.ch/
INDEXCARD, 12/16
 
Cooperative Association of Internet Data Analysis (CAIDA)

Based at the University of California's San Diego Supercomputer Center, CAIDA supports cooperative efforts among the commercial, government and research communities aimed at promoting a scalable, robust Internet infrastructure. It is sponsored by the Defense Advanced Research Project Agency (DARPA) through its Next Generation Internet program, by the National Science Foundation, Cisco, Inc., and Above.net.

INDEXCARD, 13/16
 
Gottfried Wilhelm von Leibniz

b. July 1, 1646, Leipzig
d. November 14, 1716, Hannover, Hanover

German philosopher, mathematician, and political adviser, important both as a metaphysician and as a logician and distinguished also for his independent invention of the differential and integral calculus. 1661, he entered the University of Leipzig as a law student; there he came into contact with the thought of men who had revolutionized science and philosophy--men such as Galileo, Francis Bacon, Thomas Hobbes, and René Descartes. In 1666 he wrote De Arte Combinatoria ("On the Art of Combination"), in which he formulated a model that is the theoretical ancestor of some modern computers.

INDEXCARD, 14/16
 
Intelsat

Intelsat, the world's biggest communication satellite services provider, is still mainly owned by governments, but will be privatised during 2001, like Eutelsat. A measure already discussed 1996 at an OECD competition policy roundtable in 1996. Signatory of the Intelsat treaty for the United States of America is Comsat, a private company listed on the New York Stock Exchange. Additionally Comsat is one of the United Kingdom's signatories. Aggregated, Comsat owns about 20,5% of Intelsat already and is Intelsat's biggest shareholder. In September 1998 Comsat agreed to merge with Lockheed Martin. After the merger, Lockheed Martin will hold at least 49% of Comsat share capital.

http://www.intelsat.int/index.htm

http://www.eutelsat.org/
http://www.oecd.org//daf/clp/roundtables/SATS...
http://www.comsat.com/
http://www.nyse.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
http://www.comsat.com/
INDEXCARD, 15/16
 
Mass production

The term mass production refers to the application of the principles of specialization, division of labor, and standardization of parts to the manufacture of goods. The use of modern methods of mass production has brought such improvements in the cost, quality, quantity, and variety of goods available that the largest global population in history is now sustained at the highest general standard of living. A moving conveyor belt installed in a Dearborn, Michigan, automobile plant in 1913 cut the time required to produce flywheel magnetos from 18 minutes to 5 and was the first instance of the use of modern integrated mass production techniques.

INDEXCARD, 16/16