wio

 CONTENTS   SEARCH   HISTORY   HELP 



  Report: Slave and Expert Systems

Browse:
  Related Search:


 WORLD-INFOSTRUCTURE > SLAVE AND EXPERT SYSTEMS > 1980S: ARTIFICIAL INTELLIGENCE ...
  1980s: Artificial Intelligence (AI) - From Lab to Life


Following the commercial success of expert systems, which started in the 1970s, also other AI technologies began to make their way into the marketplace. In 1986, U.S. sales of AI-related hardware and software rose to U.S.$ 425 million. Especially expert systems, because of their efficiency, were still in demand. Yet also other fields of AI turned out to be successful in the corporate world.

Machine vision systems for example were used for the cameras and computers on assembly lines to perform quality control. By 1985 over a hundred companies offered machine vision systems in the U.S., and sales totaled U.S.$ 80 million. Although there was a breakdown in the market for AI-systems in 1986 - 1987, which led to a cut back in funding, the industry slowly recovered.

New technologies were being invented in Japan. Fuzzy logic pioneered in the U.S. and also neural networks were being reconsidered for achieving artificial intelligence. The probably most important development of the 1980s was, that it showed that AI technology had real life uses. AI applications like voice and character recognition systems or steadying camcorders using fuzzy logic were not only made available to business and industry, but also to the average customer.




browse Report:
Slave and Expert Systems
    Introduction: The Substitution of Human Faculties with Technology: Early Tools
 ...
-3   1960s - 1970s: Expert Systems Gain Attendance
-2   1970s: Computer-Integrated Manufacturing (CIM)
-1   Late 1970s - Present: Fourth Generation Computers
0   1980s: Artificial Intelligence (AI) - From Lab to Life
 INDEX CARD     RESEARCH MATRIX 
Machine vision
A branch of artificial intelligence and image processing concerned with the identification of graphic patterns or images that involves both cognition and abstraction. In such a system, a device linked to a computer scans, senses, and transforms images into digital patterns, which in turn are compared with patterns stored in the computer's memory. The computer processes the incoming patterns in rapid succession, isolating relevant features, filtering out unwanted signals, and adding to its memory new patterns that deviate beyond a specified threshold from the old and are thus perceived as new entities.