The 19th Century: First Programmable Computing Devices Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early Therefore After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer. The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed. Of extraordinary importance for the evolution of digital computers and |
|
1900 - 2000 A.D. 1904 First broadcast talk 1918 Invention of the short-wave radio 1929 Invention of television in Germany and Russia 1941 Invention of microwave transmission 1946 Long-distance coaxial cable systems and mobile telephone services are introduced in the USA. 1957 First data transmissions over regular phone circuits. At the beginning of the story of today's global data networks is the story of the development of In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry. The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks. Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance. 1969 ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute. Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972. Before it was decommissioned in 1990, In the USA it was already in 1994 that commercial users outnumbered military and academic users. Despite the rapid growth of the Net, most computers linked to it are still located in the United States. 1971 Invention of 1979 Introduction of 1992 Launch of the |
|
1000 B.C. - 0 900 B.C. A postal service is used for governmental purposes in China. 500 B.C. In ancient Greece trumpets, drums, shouting, beacon, fires, smoke signals, and mirrors are used for message transmission. 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of a message transmission while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by a torch signal that the appropriate water level had been reached. The methods disadvantage was that the possible messages were restricted to a given code, but as the system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand the messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, 3rd century B.C. Wax tablets are used as writing material in Mesopotamia, ancient Greece, and Etruria. 2nd century B.C. In China paper is invented. 1st century B.C. The use of codices instead of scrolls - basically the hardcover book as we know it today - is an essential event in European history. To quote accurately by page number, to browse through pages and to skip chapters - things that were impossible when reading scrolls - becomes possible. In the computer age we are witnesses to a kind of revival of the scrolls as we scroll up and down a document. The introduction of hypertext possibly marks the beginning of a similar change as has taken place with the substitution of scrolls with codices. |
|
Like that car? The tricks of the data body industry 2. Like that car? The tricks of the data body industry In the New Economy, data have become a primary resource. Businesses unable to respond to the pressure of informatisation are quickly left behind. "Information is everything" has become the war-cry of the New Economy. More than ever, business companies now collect data related to their customers, their competitors, economic indicators, etc., and compile them in However, there are also many companies that specialise in data body economics as the main line of business. They collect huge amount of data process and enhance them (thereby increasing the value of the data) and offer them on to other companies. For example, somebody who has been attracted by a car on display in an airport terminal and completes a card with name and address to participate in a draw reveals a lot of economically valuable information about him / herself. Apart from name and address, and other data that is completed on the card, this person also can be assumed to be a potential car buyer (evidently he / she wants a car) and to be relatively affluent (the poor do not normally travel by plane). The time when you complete the card also provides information: in July and August, you are more likely to be a holiday maker than in November. Possibly in small print somewhere on the ticket you complete you agree to receive more information about this and other products, and you agree also that your data are "electronically processed". The data acquired this way can normally be expected to be much more valuable than the car the is offered in the draw. Most people who completed the cards will not win in the draw, but instead end up on directs marketing data warehouses and one day receive offers of products and services which they never knew they wanted. |
|
Backbone Networks Backbone networks are central networks usually of very high bandwidth, that is, of very high transmitting capacity, connecting regional networks. The first backbone network was the |
|
WIPO The World Intellectual Property Organization is one of the specialized agencies of the United Nations (UN), which was designed to promote the worldwide protection of both industrial property (inventions, trademarks, and designs) and copyrighted materials (literary, musical, photographic, and other artistic works). It was established by a convention signed in Stockholm in 1967 and came into force in 1970. The aims of WIPO are threefold. Through international cooperation, WIPO promotes the protection of intellectual property. Secondly, the organization supervises administrative cooperation between the Paris, Berne, and other intellectual unions regarding agreements on trademarks, patents, and the protection of artistic and literary work and thirdly through its registration activities the WIPO provides direct services to applicants for, or owners of, industrial property rights. |
|
Electronic Messaging (E-Mail) Electronic messages are transmitted and received by computers through a network. By E-Mail texts, images, sounds and videos can be sent to single users or simultaneously to a group of users. Now texts can be sent and read without having them printed. E-Mail is one of the most popular and important services on the Internet. |
|
WTO An international organization designed to supervise and liberalize world trade. The WTO (World Trade Organization) is the successor to the General Agreement on Tariffs and Trade (GATT), which was created in 1947 and liberalized the world's trade over the next five decades. The WTO came into being on Jan. 1, 1995, with 104 countries as its founding members. The WTO is charged with policing member countries' adherence to all prior GATT agreements, including those of the last major GATT trade conference, the Uruguay Round (1986-94), at whose conclusion GATT had formally gone out of existence. The WTO is also responsible for negotiating and implementing new trade agreements. The WTO is governed by a Ministerial Conference, which meets every two years; a General Council, which implements the conference's policy decisions and is responsible for day-to-day administration; and a director-general, who is appointed by the Ministerial Conference. The WTO's headquarters are in Geneva, Switzerland. |
|
1996 WIPO Copyright Treaty (WCT) The 1996 |
|
IIPA The International |
|