Satyrs, Frankenstein, Machine Men, Cyborgs

The idea of hybrid beings between man and non-human entities can be traced back to mythology: mythologies, European and non-European are populated with beings which are both human and non-human, and which, because of this non-humanness, have served as reference points in the human endeavour of understanding what it means to be human. Perhaps "being human" is not even a meaningful phrase without the possibility to identify ourselves also with the negation of humanness, that is, to be human through the very possibility of identification with the non-human.

While in classical mythology, such being were usually between the man and animal kingdoms, or between the human and the divine, the advent of modern technology in the past two centuries has countered any such irrational representations of humanness. The very same supremacy of rationality which deposited the hybrid beings of mythology (and of religion) on the garbage heap of the modern period and which attempted a "pure" understanding of humanness, has also been responsible for the rapid advance of technology and which in turn prepared a "technical" understanding of the human.

The only non-human world which remains beyond the animal and divine worlds is the world of technology. The very attempt of a purist definition of the human ran encountered difficulty; the theories of Darwin and Freud undermined the believe that there was something essentially human in human beings, something that could be defined without references to the non-human.

Early representations of half man - half machine creatures echo the fear of the violent use of machinery, as in wars. Mary Shelley published Frankenstein in 1818, only a few years after the end of the Napoleonic wars. But machines are not only a source of fear exploited in fiction literature, their power and makes their non-humanness super-humanness. The French philosopher and doctor Julien de La Mettrie argues in his famous Machine Man that human beings are essentially constructed like machines and that they obey to the same principles. Machine Man provides a good example of how the ideas of the Enlightenment of human autonomy are interwoven with a technical discourse of perfection.

What human minds have later dreamed up about - usually hostile - artificial beings has segmented in the literary genre of science fiction. Science fiction seems to have provided the "last" protected zone for the strong emotions and hard values which in standard fiction literature would relegate a story into the realm of kitsch. Violent battles, strong heroes, daring explorations, infinity and solitude, clashes of right and wrong and whatever else makes up the aesthetic repertoire of metaphysics has survived unscathed in science fiction.

However, science fiction also seems to mark the final sequence of pure fiction: the Cyborg heroes populating this genre have transcended the boundary between fact and fiction, ridiculing most established social theories of technology based on technological instrumentalism. Donna Haraway has gone a long way in coming to terms with the cultural and social implications of this development. "By the late twentieth century, our time, a mythic time, we are all chimeras, theorized and fabricated hybrids of machine and organism; in short, we are cyborgs", Haraway states in her Cyborg Manifesto. In cyber culture, the boundaries between organisms and machines, between nature and culture become as ambivalent as the borderline between he physical and the non-physical: "Our best machines are made of sunshine; they are all light and clean because they are nothing but signals".

In the Flesh Machine the Critial Art Ensemble analyses the mapping of the body, as in genetics, as one aspect of keeping state power in place, the other two aspects being the "war machine" and the "sight machine". The mapping of the flesh machine is a logical and necessary consequence of the development of the other two "machines". Cyborgisation is in the words of CEA, the "coming of age of the flesh machine", which, although it has "intersected both the sight and war machine since ancient times ... is the slowest to develop. " Representation is a necessary preliminary to violence, since "Any successful offensive military action begins with visualization and representation. The significant principle here .... is that vision equals control."

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611777/100438658891
 
An Economic and therefore Governmental Issue

While the digital divide might bring up the idea that enterprises will be able to sell more and more computers during the next years another truth looks as if there was no hope for a certain percentage of the population to get out of their marginalization, their position of being "have nots".

Studies show that the issue of different colors of skin play a role in this, but more than "racial" issues it is income, age and education that decides about the have and have nots.

There exist ~ 103 million households in the USA.
~6 million do not even have telephone access. Why should they care about computers?

The digital divide cuts the world into centers and peripheries, not into nations, as it runs through the boarder between the North and the South as well as through nations.

http://www.digitaldivide.gov/
http://www.digitaldividenetwork.org/
http://www.pbs.org/digitaldivide/
http://news.cnet.com/news/0-1005-200-344552.html
http://racerelations.about.com/newsissues/racerelations/msubdigdivide.htm
http://www.techweek.com/articles/11-1-99/divide.htm
http://www.ntia.doc.gov/ntiahome/net2/falling.html

The most different institutions with various interests in their background work in that field; not rarely paid by governments, which are interested in inhabitants, connected to the net and economy.
see also: http://www.washington.edu/wto/digital/

Searching information about the digital divide one will find informations saying that it is growing all the time whereas other studies suggest the contrary, like this one
http://news.cnet.com/news/0-1005-200-341054.html

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611730/100438659326
 
acceleration

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611777/100438658418
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
codes

an algorithm for bringing a legible message into an illegible form. There has to exist some sort of code book to encode/decode it.

INDEXCARD, 1/3
 
Cisco, Inc.

Being the worldwide leader in networking for the Internet, Cisco Systems is one of the most prominent companies of the Internet industry.

http://www.cisco.com

INDEXCARD, 2/3
 
Blaise Pascal

b. June 19, 1623, Clermont-Ferrand, France
d. August 19, 1662, Paris, France

French mathematician, physicist, religious philosopher, and master of prose. He laid the foundation for the modern theory of probabilities, formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience of God through the heart rather than through reason. The establishment of his principle of intuitionism had an impact on such later philosophers as Jean-Jacques Rousseau and Henri Bergson and also on the Existentialists.

INDEXCARD, 3/3