The 19th Century: First Programmable Computing Devices

Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.

Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.

After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.

The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.

Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
 
4000 - 1000 B.C.

4th millennium B.C.
In Sumer writing is invented.

Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets were used for administrative purposes. As an instrument for the administrative bodies of early empires, which began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to only very few. Being more or less separated tasks, writing and calculating converge in today's computers.

Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China.

3200 B.C.
In Sumer the seal is invented.

About 3000 B.C.
In Egypt papyrus scrolls and hieroglyphs are used.

About 1350 B.C.
In Assyria the cuneiform script is invented.

1200 B.C.
According to Aeschylus, the conquest of the town of Troy was transmitted via torch signals.

About 1100 B.C.
Egyptians use homing pigeons to deliver military information.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659725
 
Like that car? The tricks of the data body industry

2. Like that car? The tricks of the data body industry

In the New Economy, data have become a primary resource. Businesses unable to respond to the pressure of informatisation are quickly left behind. "Information is everything" has become the war-cry of the New Economy. More than ever, business companies now collect data related to their customers, their competitors, economic indicators, etc., and compile them in data warehouses. Large amounts of data acquired can be turned into a systematic collection called a data warehouse through data mining techniques. These data can be used for marketing, stock exchange transactions, risk assessment, and many other purposes.

However, there are also many companies that specialise in data body economics as the main line of business. They collect huge amount of data process and enhance them (thereby increasing the value of the data) and offer them on to other companies. Direct marketing companies belong to this category. Direct marketing companies carry out targeted marketing, also called strategic marketing, aimed at individual customers or groups of customers. This process is based on a consumer profile, a collection of data containing personal information such as age, sex, marital status, employment, address, and information about consumer and payment behaviour. Based upon this profile, conclusions regarding possible future consumption are drawn and offers are made.

For example, somebody who has been attracted by a car on display in an airport terminal and completes a card with name and address to participate in a draw reveals a lot of economically valuable information about him / herself. Apart from name and address, and other data that is completed on the card, this person also can be assumed to be a potential car buyer (evidently he / she wants a car) and to be relatively affluent (the poor do not normally travel by plane). The time when you complete the card also provides information: in July and August, you are more likely to be a holiday maker than in November. Possibly in small print somewhere on the ticket you complete you agree to receive more information about this and other products, and you agree also that your data are "electronically processed". The data acquired this way can normally be expected to be much more valuable than the car the is offered in the draw. Most people who completed the cards will not win in the draw, but instead end up on directs marketing data warehouses and one day receive offers of products and services which they never knew they wanted.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611761/100438659665
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
Chappe's fixed optical network

Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores.

Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best.

Forerunners of Chappe's optical network are the Roman smoke signals network and Aeneas Tacitus' optical communication system.

For more information on early communication networks see Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks.

INDEXCARD, 1/4
 
Moral rights

Authors of copyrighted works (besides economic rights) enjoy moral rights on the basis of which they have the right to claim their authorship and require that their names be indicated on the copies of the work and in connection with other uses thereof. Moral rights are generally inalienable and remain with the creator even after he has transferred his economic rights, although the author may waive their exercise.

INDEXCARD, 2/4
 
Sputnik

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defence. As the US Department of Defence encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

In the same year the USA launched their first satellite - Explorer I - data were transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. But up to now, most satellites are designed for military purposes such as reconnaissance.

INDEXCARD, 3/4
 
Sun Microsystems

Founded in 1982 and headquartered in Palo Alto, USA, Sun Microsystems manufactures computer workstations, servers, and software.

http://www.sun.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/9/0,5716,108249+1+105909,00.html .

http://www.sun.com/
http://www.britannica.com/bcom/eb/article/9/0...
INDEXCARD, 4/4