fingerprint identification Although fingerprinting smacks of police techniques used long before the dawn of the information age, its digital successor finger scanning is the most widely used biometric technology. It relies on the fact that a fingerprint's uniqueness can be defined by analysing the so-called "minutiae" in somebody's fingerprint. Minutae include sweat pores, distance between ridges, bifurcations, etc. It is estimated that the likelihood of two individuals having the same fingerprint is less than one in a billion. As an access control device, fingerprint scanning is particularly popular with military institutions, including the Pentagon, and military research facilities. Banks are also among the principal users of this technology, and there are efforts of major credit card companies such as Visa and MasterCard to incorporate this finger print recognition into the bank card environment. Problems of inaccuracy resulting from oily, soiled or cracked skins, a major impediment in fingerprint technology, have recently been tackled by the development a contactless capturing device ( As in other biometric technologies, fingerprint recognition is an area where the "criminal justice" market meets the "security market", yet another indication of civilian spheres becomes indistinguishable from the military. The utopia of a prisonless society seems to come within the reach of a technology capable of undermining freedom by an upward spiral driven by identification needs and identification technologies. |
|
Eliminating online censorship: Freenet, Free Haven and Publius Protecting speech on the global data networks attracts an increasing attention. The efforts and the corresponding abilities of governmental authorities, corporations and copyright enforcement agencies are countered by similar efforts and abilities of researchers and engineers to provide means for anonymous and uncensored communication, as Freenet, Free Haven and Publius. All three of them show a similar design. Content is split up and spread on several servers. When a file is requested, the pieces are reassembled. This design makes it difficult to censor content. All of these systems are not commercial products. The most advanced system seems to be Publius. Because of being designed by researchers and engineers at the prestigious For more information on Publius, see John Schwartz, Online and Unidentifiable? in: The Washington Post, June 30, 2000, Freenet web site: Free Haven web site: Publius web site: |
|
Palm recognition In palm recognition a 3-dimensional image of the hand is collected and compared to the stored sample. Palm recognition devices are cumbersome artefacts (unlike fingerprint and iris recognition devices) but can absorb perform a great amount of identification acts in a short time. They are therefore preferably installed in situations where a large number of people is identified, as in airports. |
|
Global Data Flows In the space of flows constituted by today's global data networks the space of places is transcended. Visualizations of these global data flows show arches bridging seas and continents, thereby linking the world's centres of research and development, economics and politics. In the global "Network Society" (Manuel Castells) the traditional centres of power and domination are not discarded, in the opposite, they are strengthened and reinforced by the use of information and communication technologies. Political, economical and symbolical power becomes increasingly linked to the use of modern information and communication technologies. The most sensitive and advanced centres of information and communication technologies are the stock markets. Excluded from the network constituted by modern information and communication technologies, large parts of Africa, Asia and South America, but also the poor of industrialized countries, are ranking increasingly marginal to the world economy. Cities are centres of communications, trade and power. The higher the percentage of urban population, the more it is likely that the telecommunications infrastructure is generally good to excellent. This goes hand in hand with lower telecommunications costs. Those parts of the world with the poorest infrastructure are also the world's poorhouse. In Bangladesh for most parts of the population a personal computer is as expensive as a limousine in European one-month's salary in Europe, they have to pay eight annual salaries. Therefore telecommunications infrastructure is concentrated on the highly industrialized world: Most telephone mainlines, mobile telephones, computers, Internet accounts and Internet hosts (computers connected to the global data networks) can be found here. The same applies to media: the daily circulation of newspapers and the use of TV sets and radios. - Telecommunication and media services affordable to most parts of the population are mostly restricted to industrialized countries. This situation will not change in the foreseeable future: Most expenditure for telecommunications infrastructure will be restricted to the richest countries in the world. In 1998, the world's richest countries consumed 75% of all cables and wires. |
|
Biometric technologies In what follows there is a brief description of the principal biometric technologies, whose respective proponents - producers, research laboratories, think tanks - mostly tend to claim superiority over the others. A frequently used definition of "biometric" is that of a "unique, measurable characteristic or trait of a human being for automatically recognizing or verifying identity" ( All biometric technologies are made up of the same basic processes: 1. A sample of a biometric is first collected, then transformed into digital information and stored as the "biometric template" of the person in question. 2. At every new identification, a second sample is collected and its identity with the first one is examined. 3. If the two samples are identical, the persons identity is confirmed, i.e. the system knows who the person is. This means that access to the facility or resource can be granted or denied. It also means that information about the persons behaviour and movements has been collected. The system now knows who passed a certain identification point at which time, at what distance from the previous time, and it can combine these data with others, thereby appropriating an individual's data body. |
|
Iris recognition Iris recognition relies upon the fact that every individuals retina has a unique structure. The iris landscape is composed of a corona, crypts, filaments, freckles, pits radial furrows and striatations. Iris scanning is considered a particularly accurate identification technology because the characteristics of the iris do not change during a persons lifetime, and because there are several hundred variables in an iris which can be measured. In addition, iris scanning is fast: it does not take longer than one or two seconds. These are characteristics which have made iris scanning an attractive technology for high-security applications such as prison surveillance. Iris technology is also used for online identification where it can substitute identification by password. As in other biometric technologies, the use of iris scanning for the protection of privacy is a two-edged sword. The prevention of identity theft applies horizontally but not vertically, i.e. in so far as the data retrieval that accompanies identification and the data body which is created in the process has nothing to do with identity theft. |
|
2000 A.D. 2000 Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence". Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories. Convergence and Regulatory Institutions Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or |
|
Adi Shamir Adi Shamir was one of three persons in a team to invent the |
|
Terrestrial antennas Microwave transmission systems based on terrestrial antennas are similar to satellite transmission system. Providing reliable high-speed access, they are used for cellular phone networks. The implementation of the |
|
Internet Relay Chat (IRC) IRC is a text-based chat system used for live discussions of groups. For a history of IRC see Charles A. Gimon, IRC: The Net in Realtime, |
|
Calculator Calculators are machines for automatically performing arithmetical operations and certain mathematical functions. Modern calculators are descendants of a digital arithmetic machine devised by |
|
PGP A |
|