1500 - 1700 A.D.

1588
Agostino Ramelli's reading wheel

Agostino Ramelli designed a "reading wheel", which allowed browsing through a large number of documents without moving from one spot to another.

The device presented a large number of books - a small library - laid open on lecterns on a kind of ferry-wheel. It allowed skipping chapters and browsing through pages by turning the wheel to bring lectern after lectern before the eyes. Ramelli's reading wheel thus linked ideas and texts and reminds of today's browsing software used to navigate the World Wide Web.

1597
The first newspaper is printed in Europe.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611796/100438659704
 
More and more, faster and faster, but...

Since the invention of appropriate means and technologies, communication no longer requires face-to-face meetings.

From writing and reading to using computers, expanding and exhausting one's possibilities to communicate relies more and more on the application of skills we have to learn. With the increasing importance of communication technologies, learning to apply them properly becomes a kind of rite of passage.

A Small World

From the very beginning - the first Sumerian pictographs on clay tablets - to today's state of the art technologies - broadband communication via fiber-optic cables and satellites - the amount of information collected, processed and stored, the capabilities to do so, as well as the possible speed of information transmission exponentially accelerate.

Since the invention of the electrical telegraph, but especially with today's growing digital communication networks, every location on earth seems to be close, however distant it may be, and also time no longer remains a significant dimension.

Threatened Cultural Memory

More and more information is transmitted and produced faster and faster, but the shelf life of information becomes more and more fragile. For more than 4500 years Sumerian pictographs written on clay tablets remained intact, but newspapers and books, printed some decades ago, crumble into pieces; film reels, video tapes and cassettes corrode. Digitalization of information is not a cure; on the contrary it even intensifies the danger of destroying cultural heritage. Data increasingly requires specific software and hardware, but to regularly convert all available digitized information is an unexecutable task.

Compared to the longevity of pictographs on clay tablets, digitized information is produced for instant one-time use. The increasing production and processing of information causes a problem hitherto unknown: the loss of our cultural memory.

For further information see T. Matthew Ciolek, Global Networking Timeline.

For another history of communication systems see Friedrich Kittler, The History of Communication Media.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611796/100438659807
 
2000 A.D.

2000
Convergence of telephony, audiovisual technologies and computing

Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence".

Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories.

Convergence and Regulatory Institutions

Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, America Online, the world's largest online service provider, merged with Time Warner, the world's largest media corporation. For such corporations the classical approach to regulation - separate institutions regulate separate markets - is no longer appropriate, because the institutions' activities necessarily overlap. The current challenges posed to these institutions are not solely due to the convergence of communication and media systems made possible by digital technologies; they are also due to the liberalization and internationalization of the electronic communications sector. For regulation to be successful, new categorizations and supranational agreements are needed.
For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or http://www.soe.oeaw.ac.at/WP01JustLatzer.doc.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611796/100438659802
 
World Wide Web (WWW)

Probably the most significant Internet service, the World Wide Web is not the essence of the Internet, but a subset of it. It is constituted by documents that are linked together in a way you can switch from one document to another by simply clicking on the link connecting these documents. This is made possible by the Hypertext Mark-up Language (HTML), the authoring language used in creating World Wide Web-based documents. These so-called hypertexts can combine text documents, graphics, videos, sounds, and Java applets, so making multimedia content possible.

Especially on the World Wide Web, documents are often retrieved by entering keywords into so-called search engines, sets of programs that fetch documents from as many servers as possible and index the stored information. (For regularly updated lists of the 100 most popular words that people are entering into search engines, click here). No search engine can retrieve all information on the whole World Wide Web; every search engine covers just a small part of it.

Among other things that is the reason why the World Wide Web is not simply a very huge database, as is sometimes said, because it lacks consistency. There is virtually almost infinite storage capacity on the Internet, that is true, a capacity, which might become an almost everlasting too, a prospect, which is sometimes consoling, but threatening too.

According to the Internet domain survey of the Internet Software Consortium the number of Internet host computers is growing rapidly. In October 1969 the first two computers were connected; this number grows to 376.000 in January 1991 and 72,398.092 in January 2000.

World Wide Web History Project, http://www.webhistory.org/home.html

http://www.searchwords.com/
http://www.islandnet.com/deathnet/
http://www.salonmagazine.com/21st/feature/199...
INDEXCARD, 1/3
 
Fiber-optic cable networks

Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the World Wide Web.

Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Alexander Graham Bell might have not envisioned when he transmitted the first words - "Mr. Watson, come here. I want you" - over a copper wire.

Copper wires will not come out of use in the foreseeable future because of technologies as DSL that speed up access drastically. But with the technology to transmit signals at more than one wavelength on fiber-optic cables, there bandwidth is increasing, too.

For technical information from the Encyclopaedia Britannica on telecommunication cables, click here. For technical information from the Encyclopaedia Britannica focusing on fiber-optic cables, click here.

An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click here for reading.

Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click here for reading.

A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the International Cable Protection Committee.

For maps of fiber-optic cable networks see the website of Kessler Marketing Intelligence, Inc.

http://www.britannica.com/bcom/eb/article/4/0...
http://www.britannica.com/bcom/eb/article/4/0...
http://www.wired.com/wired/archive/4.12/ffgla...
http://www.pretext.com/mar98/features/story3....
INDEXCARD, 2/3
 
America Online

Founded in 1985, America Online is the world's biggest Internet service provider serving almost every second user. Additionally, America Online operates CompuServe, the Netscape Netcenter and several AOL.com portals. As the owner of Netscape, Inc. America Online plays also an important role in the Web browser market. In January 2000 America Online merged with Time Warner, the worlds leading media conglomerate, in a US$ 243,3 billion deal, making America Online the senior partner with 55 percent in the new company.

http://www.aol.com

http://www.aol.com/
INDEXCARD, 3/3