|
History: Communist Tradition Following the communist revolutions of the 20th century all "means of production" became the property of the state as representative of "the masses". Private property ceased to exist. While moral rights of the creator were recognized and economic rights acknowledged with a one-time cash award, all subsequent rights reverted to the state. With the transformation of many communist countries to a market system most of them have now introduced laws establishing markets in intellectual property rights. Still the high rate of piracy reflects a certain lack of legal tradition. |
|
|
|
2000 A.D. 2000 Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence". Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories. Convergence and Regulatory Institutions Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or |
|
|
|
Proprietary Network Proprietary networks are computer networks with standards different to the ones proposed by the |
|
|
|
Alan Turing b. June 23, 1912, London, England d. June 7, 1954, Wilmslow, Cheshire English mathematician and logician who pioneered in the field of computer theory and who contributed important logical analyses of computer processes. Many mathematicians in the first decades of the 20th century had attempted to eliminate all possible error from mathematics by establishing a formal, or purely algorithmic, procedure for establishing truth. The mathematician Kurt Gödel threw up an obstacle to this effort with his incompleteness theorem. Turing was motivated by Gödel's work to seek an algorithmic method of determining whether any given propositions were undecidable, with the ultimate goal of eliminating them from mathematics. Instead, he proved in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem [Decision Problem]" (1936) that there cannot exist any such universal method of determination and, hence, that mathematics will always contain undecidable propositions. During World War II he served with the Government Code and Cypher School, at Bletchley, Buckinghamshire, where he played a significant role in breaking the codes of the German " |
|
|