Who owns the Internet and who is in charge? The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet. The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g. Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed. For a detailed report on Internet governance, click here. |
|
Biometrics applications: physical access This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel. Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at A gate keeping system for airports relying on digital fingerprint and hand geometry is described at An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles". However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the |
|
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights) Another important multilateral treaty concerned with The complete TRIPS agreement can be found on: |
|
Internet, Intranets, Extranets, and Virtual Private Networks With the rise of networks and the corresponding decline of mainframe services computers have become communication devices instead of being solely computational or typewriter-like devices. Corporate networks become increasingly important and often use the Internet as a public service network to interconnect. Sometimes they are Software companies, consulting agencies, and journalists serving their interests make some further differences by splitting up the easily understandable term Cable TV networks and online services as Especially for financial transactions, secure proprietary networks become increasingly important. When you transfer funds from your banking account to an account in another country, it is done through the SWIFT network, the network of the Electronic Communications Networks as |
|
Timeline 1900-1970 AD 1913 the wheel cipher gets re-invented as a strip 1917 - an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys 1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin - Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected 1919 Hugo Alexander Koch invents a rotor cipher machine 1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded 1923 Arthur Scherbius founds an enterprise to construct and finally sell his late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly 1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts 1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939 1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of 1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett - at the same time the British develop the Typex machine, similar to the German Enigma machine 1943 Colossus, a code breaking computer is put into action at Bletchley Park 1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type 1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems 1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ) late 1960's the IBM Watson Research Lab develops the Lucifer cipher 1969 James Ellis develops a system of separate public-keys and private-keys |
|
Enforcement: Copyright Management and Control Technologies With the increased ease of the reproduction and transmission of unauthorized copies of digital works over electronic networks concerns among the copyright holder community have arisen. They fear a further growth of copyright piracy and demand adequate protection of their works. A development, which started in the mid 1990s and considers the copyright owner's apprehensions, is the creation of |
|
1960s - 1970s: Expert Systems Gain Attendance The concept of Expert systems were designed to mimic the knowledge and reasoning capabilities of a human specialist in a given domain by using |
|
The Romans The Romans can be called the great inventors of myths with the purpose of propaganda. Think of Or Augustus: he reunited the Roman Empire; part of his power was due to huge efforts in propaganda, visible e.g. in the mass of coins showing his face, being sent all over the empire. He understood very well, that different cultures used different symbols - and he used them for his propaganda. Politically the Roman army was an important factor. Propaganda in that case was used for the soldiers on the one hand, but on the other hand also for demonstrating the power of the army to the people, so they could trust in its strength. Even then security was an essential factor of politics. As long as the army functioned, the Roman Empire did as well ( |
|
2000 A.D. 2000 Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence". Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories. Convergence and Regulatory Institutions Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or |
|
Noam Chomsky Noam Chomsky (* 1928) works as a U.S.-linguist, writer, political activist and journalist. He is teaching at the MIT (= Massachusetts Institute of Technology) as a professor of linguistics, specializing on structural grammar and the change of language through technology and economy - and the social results of that. When he stood up against the Vietnam War he became famous as a "radical leftist". Since then he has been one of the most famous critics of his country. |
|
Citicorp/Citibank American holding company (formerly (1967-74) First National City Corporation), incorporated in 1967, with the City Bank of New York, National Association (a bank tracing to 1812), as its principal subsidiary. The latter's name changed successively to First National City Bank in 1968 and to Citibank, N.A. (i.e., National Association), in 1976. Citicorp was the holding company's popular and trade name from its inception but became the legal name only in 1974. Headquarters are in New York City. |
|
Chase Manhattan American holding company incorporated Jan. 22, 1969, to acquire, as its main subsidiary, The Chase Manhattan Bank, NA, and to develop other related financial services and operations. The Chase Manhattan Bank itself had resulted from the merger in 1955 of the Bank of the Manhattan Company (founded 1799) and The Chase National Bank (founded 1877). Its headquarters are in New York City. |
|
Reuters Group plc Founded in 1851 in London, Reuters is the world's largest news and television agency with 1,946 journalists, photographers and camera operators in 183 bureaus serving newspapers, other news agencies, and radio and television broadcasters in 157 countries. In addition to its traditional news-agency business, over its network Reuters provides financial information and a wide array of electronic trading and brokering services to banks, brokering houses, companies, governments, and individuals worldwide. http://www.reuters.com |
|
Napoleon Napoleon I. (1769-1821) was French King from 1804-1815. He is regarded as the master of propaganda and disinformation of his time. Not only did he play his game with his own people but also with all European nations. And it worked as long as he managed to keep up his propaganda and the image of the winner. Part of his already nearly commercial ads was that his name's "N" was painted everywhere. Napoleon understood the fact that people believe what they want to believe - and he gave them images and stories to believe. He was extraordinary good in black propaganda. Censorship was an element of his politics, accompanied by a tremendous amount of positive images about himself. But his enemies - like the British - used him as a negative image, the reincarnation of the evil (a strategy still very popular in the Gulf-War and the Kosovo-War) (see |
|