The third industiral revolution. Life as a product. Many years ago, the German philosopher The "third industrial revolution" is characterized by men becoming the "raw material" of their own industries. Product and producer, production and consumption, technology and nature are no longer meaningful pairs of opposites. The third is also the last revolution, as it is difficult to think of further revolutions when the distinction between subject and object becomes blurred. The world is becoming a Bestand and the human body and mind are no protected zones. They are something like the last safety zone of human being which is now itself becoming a basis for technological innovation. When the subject is weakened by its technical environment, the use of technical crooks for body and mind becomes an obvious "solution", even if the technically strengthened subject is strengthened at the cost of no longer being a "subject" in the traditional, metaphysical sense. Biological processes are dissected and subjected to technical control. This technical control is technical in two senses: it is not only control through technology but by ttechnology itsself, since it is not carried out by unaided human minds, but increasingly by intelligent machines. The point where this Andersian third industrial revolution reaches an unprecedented logic seems to lie within the realm of genetic engeneering. This example shows that the dissection of humanness - the decoding of genetic information - is tantamount to commodification. The purpose of the commercial genetic research projects is the use of genetic information as a resource for the development of new products, e.g. in pharmaceutics. Genetic products carry the promise of offering a solution to so-far uncurable diseases such as cancer, Alzeheimer, heart disorders, schizophrenia, and others, but they also open up the possibility of "breaking the chains of evolution", of actively manipulating the genetic structure of human beings and of "designing" healthy, long-living, beautiful, hard-working etc. beings. Here, the homo creator and the homo materia finally become indistinguishable and we are being to merge with our products in such a way that it "we" loses the remains of its meaning. Since 1990 research on human genetics is organised in the But exactly this patentising is of paramount importance in the emerging "post-industrial" society where knowledge becomes the most important resource. A patent is nothing else than a property title to a piece of "know-how", and an necessary consequence commodification. When life no longer simply a natural creation but a product, it, too, will be patented and becomes a commodity. Against the idea of the human genome as a public good, or an "open source", there is a growing competion on the part of private industry. Companies such as But the commodification of life is not limited ot the human species. Genetically altered animals and plants are also suffering the same fate, and in most industrialised nations it is now possible to patent genetically engeneered species and crops. The promises of the "Green Revolution" of the 1960s are now repeated in the genetic revolution. Genetic engeneering, so it is argued, will be able to breed animals and plants which resist disease and yield more "food" and will therfore help to tackle problems of undernutrition and starvation. Companies such as |
|
1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Vandana Shiva Vandana Shiva is the Director of the Research Foundation for Science, Technology and Ecology in New Delhi. She has been a tireless and one of the most original campaigners for ecological diversity, eco-feminism and against "official" development policies and commercial exploitation. Book publications include Ecofeminism (1993), Monocultures of the Mind (1993) and Biopiracy : The Plunder of Nature and Knowledge (1997 |
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|