1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Gutenberg's printing press, 1455 Gutenberg's printing press, an innovative aggregation of inventions known for centuries before Gutenberg: the olive oil press, oil-based ink, block-print technology, and movable types, allowed the mass production of the movable type used to reproduce a page of text and increased the production rate enormously. During the Middle Ages monks took at least a year over making a handwriting copy of a book. Gutenberg printed about 300 sheets per day. Because parchment was too costly for mass production - often for the production of one copy of a medieval book a whole flock of sheep was used - it was substituted by cheap paper made from recycled clothing left over from the massive number of dead caused by the Great Plague. Within forty-five years, in 1500, already ten million copies were available for a few hundred thousand literate. Because individuals could examine a range of opinions now, the printed Bible, especially after having been translated into German by Martin Luther, and increasing literacy added to the subversion of clerical authorities. The interest in books increased with the rise of vernacular, non-Latin literary texts, beginning with Dante's Divine Comedy, the first literary text written in Italian. Among others, the improvement of the distribution and the production of books and increased literacy made the development of print mass media possible. Michael Giesecke (Sinnenwandel Sprachwandel Kulturwandel. Studien zur Vorgeschichte der Informationsgesellschaft, Frankfurt am Main: Suhrkamp, 1992) has shown that due to a division of labor among authors, printers and typesetters Gutenberg's invention increasingly led to a standardization of - written and unwritten - language in form of orthography, grammar and signs. To communicate one's ideas became linked to the use of a kind of code, and reading became a kind of rite of passage, in every human's life an important step towards independency. With the increasing linkage of knowledge to wide reading and learnedness, the history of knowledge becomes the history of readings, of readings dependent on chance and on circumstance. For further details see: Martin Warnke, Text und Technik, Bruce Jones, Manuscripts, Books, and Maps: The Printing Press and a Changing World, |
|