1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Epilogue As scientists are working hard on a quantum computer and also on quantum cryptography one can imagine that another revolution in the study of encryption has to be expected within the next years. By then today's hardware and software tools will look extraordinary dull. At the moment it is impossible to foresee the effects on cryptography and democratic developments by those means; the best and the worst can be expected at the same time. A certain ration of pessimism and prosecution mania are probably the right mixture of emotions about those tendencies, as the idea of big brother has come into existence long ago. At the same time it will - in part - be a decision of the people to let science work against them or not. Acceleration of data-transmission calls for an acceleration of encryption-methods. And this again falls back on us, on an acceleration of daily life, blurring the private and the public for another time. We live in an intersection, job and private life growing together. Cryptography cannot help us in that case. The privacy in our mind, the virtuality of all private and public lies in the field of democracy, or at least what is - by connection to the Human Rights - regarded as democracy. |
|
History: Anglo-American Tradition With the introduction of the printing press into England in 1476 printing was made easier and faster and made copies less expensive. By the early 16th century two trades dominated the industry: independent printers and booksellers or stationers many of whom were vertically integrated as printers. At the time, the Crown was concerned about sedition and the Church about heresy. In 1557 by royal charter the Stationers' Company of London was created and exclusive rights granted. Approved printers were given the right to copy approved works. Accordingly the roots of copyright were censorship. The Statute of Queen Ann, the first formal copyright law, was passed in 1710. Copyright was then conferred on the author of a work, but still the owner of copyright was nearly always the bookseller. Only in 1775 the House of Lords replaced the common law of printing rights in favor of the author. In this tradition the underlying concept of copyright is monopoly, first granted to printers, then to booksellers and later to individual creators. Copyright is treated as a commodity to be bought and sold and inspired by a need to protect the public from the power of the artist. |
|
Digital Signatures, Timestamps etc Most computer systems are far from being secure. A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data. It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector. Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions. If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool. In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too. A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged. For more terms of cryptography and more information see: |
|
Louis Braille b. Jan. 4, 1809, Coupvray, near Paris, France d. Jan. 6, 1852, Paris, France Educator who developed a system of printing and writing that is extensively used by the blind and that was named for him. Himself blind Braille became interested in a system of writing, exhibited at the school by Charles Barbier, in which a message coded in dots was embossed on cardboard. When he was 15, he worked out an adaptation, written with a simple instrument, that met the needs of the sightless. He later took this system, which consists of a six-dot code in various combinations, and adapted it to musical notation. He published treatises on his type system in 1829 and 1837. |
|
Royal Dutch/Shell Group One of the world's largest corporate entities in sales, consisting of companies in more than 100 countries, whose shares are owned by NV Koninklijke Nederlandsche Petroleum Maatschappij (Royal Dutch Petroleum Company Ltd.) of The Hague and by the "Shell" Transport and Trading Company, PLC, of London. Below these two parent companies are two holding companies, Shell Petroleum NV and the Shell Petroleum Company Limited, whose shares are owned 60 percent by Royal Dutch and 40 percent by "Shell" Transport and Trading. The holding companies, in turn, hold shares in and administer the subsidiary service companies and operating companies around the world, which engage in oil, petrochemical, and associated industries, from research and exploration to production and marketing. Several companies also deal in metals, nuclear energy, solar energy, coal, and consumer products. |
|
William Frederick Friedman Friedman is considered the father of U.S.-American cryptoanalysis - he also was the one to start using this term. |
|
Medieval universities and copying of books The first of the great medieval universities was established at Bologna. At the beginning, universities predominantly offered a kind of do-it-yourself publishing service. Books still had to be copied by hand and were so rare that a copy of a widely desired book qualified for being invited to a university. Holding a lecture equaled to reading a book aloud, like a priest read from the Bible during services. Attending a lecture equaled to copy a lecture word by word, so you had your own copy of a book, thus enabling you to hold a lecture, too. For further details see History of the Idea of a University, |
|
News Corporation The News Corporation Ltd., a global media holding company, which governed News Limited (Australia), News International (U.K.), and News America Holdings Inc. (U.S.) was founded by the Australian-born newspaper publisher and media entrepreneur, Rupert Murdoch. Murdoch's corporate interests center on newspaper, magazine, book, and electronic publishing; television broadcasting; and film and video production, principally in the United States, the United Kingdom, and Australia. |
|
Internet Software Consortium The Internet Software Consortium (ISC) is a nonprofit corporation dedicated to the production of high-quality reference implementations of Internet standards that meet production standards. Its goal is to ensure that those reference implementations are properly supported and made freely available to the Internet community. http://www.isc.org |
|
CNN CNN is a U.S.-TV-enterprise, probably the world's most famous one. Its name has become the symbol for the mass-media, but also the symbol of a power that can decide which news are important for the world and which are not worth talking about. Every message that is published on CNN goes around the world. The Gulf War has been the best example for this until now, when a CNN-reporter was the one person to do the countdown to a war. The moments when he stood on the roof of a hotel in Baghdad and green flashes surrounded him, went around the world. |
|