More and more, faster and faster, but... Since the invention of appropriate means and technologies, communication no longer requires face-to-face meetings. From writing and reading to using computers, expanding and exhausting one's possibilities to communicate relies more and more on the application of skills we have to learn. With the increasing importance of communication technologies, learning to apply them properly becomes a kind of rite of passage. A Small World From the very beginning - the first Sumerian pictographs on clay tablets - to today's state of the art technologies - broadband communication via Since the invention of the electrical telegraph, but especially with today's growing digital communication networks, every location on earth seems to be close, however distant it may be, and also time no longer remains a significant dimension. Threatened Cultural Memory More and more information is transmitted and produced faster and faster, but the shelf life of information becomes more and more fragile. For more than 4500 years Sumerian pictographs written on clay tablets remained intact, but newspapers and books, printed some decades ago, crumble into pieces; film reels, video tapes and cassettes corrode. Digitalization of information is not a cure; on the contrary it even intensifies the danger of destroying cultural heritage. Data increasingly requires specific software and hardware, but to regularly convert all available digitized information is an unexecutable task. Compared to the longevity of pictographs on clay tablets, digitized information is produced for instant one-time use. The increasing production and processing of information causes a problem hitherto unknown: the loss of our cultural memory. For further information see For another history of communication systems see |
|
Highlights on the Way to a Global Commercial Media Oligopoly: 1990s -1994 Viacom multimedia and industrial corporation takes control of Paramount Communications for US$ 9.6 billion, as well as Blockbuster Entertainment, a huge video store chain, for US$ 8.4. billion. 1995 Entertainment giant Disney buys Capital Cities-ABC for US$ 19 billion. The industrial and broadcasting company Westinghouse Corp. buys out CBS for US$ 5.4 billion. In a US$ 7.2 billion deal, Time Warner acquires Turner Communications, owner of prime cable TV channels CNN, TBS and TNT and a major classic American film library. 1996 Westinghouse/CBS buys Infinity Broadcasting's large group of radio stations. Murdoch and News Corp. acquire ten more TV stations and TV production studios with the US$ 2.5 billion purchase of New World Communications Group. Viacom buys half of UPN-TV network, adding that to its other holdings, which include eleven TV stations, along with MTV, VH-1, and other cable TV channels and Paramount movie studios. 1997 Radio Groups Chancellor Media and Evergreen merge and are linked by ownership with Capstar Broadcasting; they also buy ten radio stations from Viacom. By mid-1997 Chancellor/Capstar controls no fewer than 325 radio stations around the United States. Chancellor/Capstar's controlling ownership group, Hicks Muse Tate & Furst, buys the seventh largest radio group, SFX, adding another seventy-two radio stations, making a total of nearly four hundred stations controlled by this one source. Westinghouse-CBS buys out American Radio Systems, the fourth largest radio chain in total audience, which gives Westinghouse-CBS over 170 radio stations with a total audience nearly equal to that of the Chancellor/Capstar group. Giant European-based print and electronic publishing and data base corporations Reed Elsevier and Wolters Kluwer merge. 1998 Bertelsmann buys the Random House-Alfred A. Knopf-Crown Publishing group of book publishers from Newhouse/Advance Publications, adding to its Bantam-Doubleday-Dell publishing group and giving Bertelsmann by far the largest English-language publishing operations. 1999 AOL, the worlds leading Internet service provider and Time Warner, the worlds leading classical media company merge in a US$ 243.3 billion deal. |
|
1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
Hieroglyphs Hieroglyphs are pictures, used for writing in ancient Egypt. First of all those pictures were used for the names of kings, later more and more signs were added, until a number of 750 pictures |
|
Intellectual property Intellectual property, very generally, relates to the output that result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) industrial property ( |
|
Fiber-optic cable networks Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Copper wires will not come out of use in the foreseeable future because of technologies as For technical information from the Encyclopaedia Britannica on telecommunication cables, click An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the For maps of fiber-optic cable networks see the website of |
|
World Wide Web (WWW) Probably the most significant Internet service, the World Wide Web is not the essence of the Internet, but a subset of it. It is constituted by documents that are linked together in a way you can switch from one document to another by simply clicking on the link connecting these documents. This is made possible by the Hypertext Mark-up Language (HTML), the authoring language used in creating World Wide Web-based documents. These so-called hypertexts can combine text documents, graphics, videos, sounds, and Especially on the World Wide Web, documents are often retrieved by entering keywords into so-called search engines, sets of programs that fetch documents from as many Among other things that is the reason why the World Wide Web is not simply a very huge database, as is sometimes said, because it lacks consistency. There is virtually almost infinite storage capacity on the Internet, that is true, a capacity, which might become an almost everlasting too, a prospect, which is sometimes According to the Internet domain survey of the |
|