Asymmetric or Public-Key-Cryptosystems

Here the keys for encryption and decryption differ. There needs to exist a private key, which is only known to the individual, and a public key, which is published. Every person has her or his own private key that is never published. It is used for decrypting only. Mathematically the different keys are linked to each other, still it is nearly impossible to derive the private key from the public one.
For sending a message to someone, one has to look up the other's public key and encrypt the message with it. The keyholder will use his/her private key to decrypt it. While everybody can send a message with the public key, the private key absolutely has to stay secret - and probably will.

"The best system is to use a simple, well understood algorithm which relies on the security of a key rather than the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all over." (Andrew Carol)

very famous examples for public-key systems are:

· RSA:
The RSA is probably one of the most popular public-key cryptosystems. With the help of RSA, messages can be encrypted, but also digital signatures are provided.
The mathematics behind are supposedly quite easy to understand (see: http://world.std.com/~franl/crypto/rsa-guts.html.

· PGP:
PGP is a public key encryption program. Most of all it is used for e-mail encryption.
It is supposed to be quite safe - until now.

· PGPi is simply the international variation of PGP.

for further information about the RSA and other key-systems visit the RSA homepage:
http://www.rsa.com/rsalabs/faq/
http://www.rsa.com/rsalabs/faq/questions.html
or:
http://www.pgpi.org

All of those tools, like hash functions, too, can help to enhance security and prevent crime.
They can theoretically, but sometimes they do not, as the example of the published credit card key of France in March 2000 showed.
For more information see:
http://news.voila.fr/news/fr.misc.cryptologie

Still, cryptography can help privacy.
On the other hand cryptography is only one element to assure safe transport of data. It is especially the persons using it who have to pay attention. A key that is told to others or a lost cryptographic key are the end of secrecy.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438659074
 
ECHELON Main Stations

Location

Country

Target/Task

Relations

MORWENSTOW

UK

INTELSAT, Atlantic, Europe, Indian Ocean

NSA, GCHQ

SUGAR GROVE

USA

INTELSAT, Atlantic, North and South America

NSA

YAKIMA FIRING CENTER

USA

INTELSAT, Pacific

NSA

WAIHOPAI

NEW ZEALAND

INTELSAT, Pacific

NSA, GCSB

GERALDTON

AUSTRALIA

INTELSAT, Pacific

NSA, DSD

















MENWITH HILL

UK

Sat, Groundstation, Microwave(land based)

NSA, GCHQ

SHOAL BAY

AUSTRALIA

Indonesian Sat

NSA, DSD

LEITRIM

CANADA

Latin American Sat

NSA, CSE

BAD AIBLING

GERMANY

Sat, Groundstation

NSA

MISAWA

JAPAN

Sat

NSA

















PINE GAP

AUSTRALIA

Groundstation

CIA

















FORT MEADE

USA

Dictionary Processing

NSA Headquarters

WASHINGTON

USA

Dictionary Processing

NSA

OTTAWA

CANADA

Dictionary Processing

CSE

CHELTENHAM

UK

Dictionary Processing

GCHQ

CANBERRA

AUSTRALIA

Dictionary Processing

DSD

WELLINGTON

NEW ZEALAND

Dictionary Processing

GCSB Headquarters



TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611746/100438659207
 
Extract of Disney’s Content Production and Distribution Holdings

Although the traditional media companies first steps into the digital sphere were fairly clumsy, they have quickly learned from their mistakes and continued to enlarge their Internet presence. Time Warner now for instance operates about 130 Web-Sites (http://www.timewarner.com/corp/about/pubarchive/websites.html). Anyhow the stronger online-engagement of the big media conglomerates by 1998 has led to the establishment of a new pattern: "More than three-quarters of the 31 most visited news and entertainment websites were affiliated with large media firms, and most of the rest were connected to outfits like AOL and Microsoft." (Broadcasting and Cable, 6/22/98).

During the last years many of the smaller players in the field of digital media have been driven out of competition by the huge media conglomerates. This mainly is a result of the advantages that the commercial media giants have over their less powerful counterparts:

    As engagement in online activities mostly does not lead to quick profits, investors must be able to take losses, which only powerful companies are able to.



    Traditional media outlets usually have huge stocks of digital programming, which they can easily plug into the Internet at little extra cost.



    To generate audience, the big media conglomerates constantly promote their Websites and other digital media products on their traditional media holdings.



    As possessors of the hottest "brands" commercial media companies often get premier locations from browser software makers, Internet service providers, search engines and portals.



    Having the financial resources at their disposition the big media firms are aggressive investors in start-up Internet media companies.



Commercial media companies have close and long ties to advertisers, which enables them to seize most of these revenues.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611795/100438659167
 
Digital Commercial Content

Starting in the mid 1990s today most traditional media can also be found online. The overwhelming majority of bigger newspapers and periodicals, but also radio and TV stations now complement their classic media formats with digital programming. For the most part they transform existing analogue information in digital form, with some additional features.

Especially the big media conglomerates, having realized the economic potential of the Internet, have started to get into the business of digital content. Not surprisingly their engagement in the virtual sphere has not brought much new concerning their programming. They offer entertainment, music, sports and some news channels. One of the reasons for this development might be, that the big commercial media companies are able to re-use already existing programming from their other ventures. Examples are Viacom's MTV Network, which now has a twin online or Time Warner's CNN, which on the Web is called CNN Interactive. Considering business economic factors this move suggests itself as hardly any further resources are needed and the already existing programming can be put in the Internet at little extra cost. Also, regarding the undeniable success of their traditional content in terms of revenue generation the digital reproduction of their classic programming concept seems to be an obvious step.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611795/100438658958
 
Machine language

Initially computer programmers had to write instructions in machine language. This coded language, which can be understood and executed directly by the computer without conversion or translation, consists of binary digits representing operation codes and memory addresses. Because it is made up of strings of 1s and 0s, machine language is difficult for humans to use.

INDEXCARD, 1/3
 
Expert system

Expert systems are advanced computer programs that mimic the knowledge and reasoning capabilities of an expert in a particular discipline. Their creators strive to clone the expertise of one or several human specialists to develop a tool that can be used by the layman to solve difficult or ambiguous problems. Expert systems differ from conventional computer programs as they combine facts with rules that state relations between the facts to achieve a crude form of reasoning analogous to artificial intelligence. The three main elements of expert systems are: (1) an interface which allows interaction between the system and the user, (2) a database (also called the knowledge base) which consists of axioms and rules, and (3) the inference engine, a computer program that executes the inference-making process. The disadvantage of rule-based expert systems is that they cannot handle unanticipated events, as every condition that may be encountered must be described by a rule. They also remain limited to narrow problem domains such as troubleshooting malfunctioning equipment or medical image interpretation, but still have the advantage of being much lower in costs compared with paying an expert or a team of specialists.

INDEXCARD, 2/3
 
Bad Aibling Station

Latitude: 47.86353, Longitude: 12.00983

RSOC - Bad Aibling is a ground station for the interception of civil and military satellite communications traffic operated by the NSA. About 1000 personnel are on the staff at the Bad Aibling Regional SIGINT Operations Center in Germany, which conducts satellite communications interception activities and is also a downlink station for geostationary SIGINT satellites, like the CANYON program or the MAGNUM/ORION system. Operational responsibility of the groundstation was transfered to the ARMY Intelligence and Security Command in 1995, but there is also influence from the Air Force's 402nd Intelligence Squadron. Till the end of the cold war the main target was the Soviet Union.

for more information:

Description by FAS intelligence resource program.

http://www.fas.org/irp/facility/bad_aibling.htm

Description of the tasks of the Signals Intelligence Brigade.

http://www.fas.org/irp/doddir/army/fm34-37_97/6-chap.htm

Look at a detailed guide for military newbies at Bad Aibling.

http://www.dmdc.osd.mil/sites/owa/Installation.prc_Home?p_SID=&p_DB=P

http://www.fas.org/irp/facility/bad_aibling.h...
http://www.fas.org/irp/doddir/army/fm34-37_97...
http://www.dmdc.osd.mil/sites/owa/Installatio...
INDEXCARD, 3/3