|
Advertising and the Media System Media systems (especially broadcasting) can be classified in two different types: Public Media Systems: Government control over broadcasting through ownership, regulation, and partial funding of public broadcasting services. Private Media System: Ownership and control lies in the hands of private companies and shareholders. Both systems can exist in various forms, according to the degree of control by governments and private companies, with mixed systems (public and private) as the third main kind. Whereas public media systems are usually at least partially funded by governments, private broadcasting solely relies on advertising revenue. Still also public media systems cannot exclude advertising as a source of revenue. Therefore both types are to a certain degree dependent on money coming in by advertisers. And this implies consequences on the content provided by the media. As the attraction of advertisers becomes critically important, interests of the advertising industry frequently play a dominant role concerning the structure of content and the creation of environments favorable for advertising goods and services within the media becomes more and more common. |
|
|
|
Virtual cartels, oligopolistic structures Global networks require global technical standards ensuring the compatibility of systems. Being able to define such standards makes a corporation extremely powerful. And it requires the suspension of competitive practices. Competition is relegated to the symbolic realm. Diversity and pluralism become the victims of the globalisation of baroque sameness. The ICT market is dominated by incomplete competition aimed at short-term market domination. In a very short time, new ideas can turn into best-selling technologies. Innovation cycles are extremely short. But today's state-of-the-art products are embryonic trash.
|
|
|
|
What is the Internet? Each definition of the Internet is a simplified statement and runs the risk of being outdated within a short time. What is usually referred to as the Internet is a network of thousands of computer networks (so called autonomous systems) run by governmental authorities, companies, and universities, etc. Generally speaking, every time a user connects to a computer networks, a new Internet is created. Technically speaking, the Internet is a What constitutes the Internet is constantly changing. Certainly the state of the future Net will be different to the present one. Some years ago the Internet could still be described as a network of computer networks using a common communication protocol, the so-called Also, the Internet is not solely constituted by computers connected to other computers, because there are also point-of-sale terminals, cameras, robots, telescopes, cellular phones, TV sets and and an assortment of other hardware components that are connected to the Internet. At the core of the Internet are so-called Since these networks are often privately owned, any description of the Internet as a public network is not an accurate. It is easier to say what the Internet is not than to say what it is. On 24 October, 1995 the U.S. What is generally and in a simplyfiying manner called the Internet, may be better referred to as the Matrix, a term introduced by science fiction writer Strictly speaking, the Matrix is not a medium; it is a platform for resources: for media and services. The Matrix is mainly a very powerful means for making information easily accessible worldwide, for sending and receiving messages, videos, texts and audio files, for transferring funds and trading securities, for sharing resources, for collecting weather condition data, for For a comprehensive view of uses of the Matrix, especially the World Wide Web, see " |
|
|
|
Timeline 1600 - 1900 AD 17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card - Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians - the English scientist, magician and astrologer 1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally. 1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code 18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day. 1790's Thomas Jefferson and Robert Patterson invent a wheel cipher 1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs 1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844. 1834 the 1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then 1854 the Playfair cipher is invented by Sir Charles Wheatstone 1859 for the first time a tomographic cipher gets described 1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages 1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army 1895 the invention of the radio changes cryptography-tasks again and makes them even more important |
|
|
|
Biometrics applications: physical access This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel. Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at A gate keeping system for airports relying on digital fingerprint and hand geometry is described at An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles". However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the |
|
|
|
Late 1950s - Early 1960s: Second Generation Computers An important change in the development of computers occurred in 1948 with the invention of the Stretch by Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level |
|
|
|
Basics: Infringement and Fair Use The Yet copyright laws also provide that the rights of copyright owners are subject to the doctrine of " - the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes (usually certain types of educational copying are allowed) - the nature of the copyrighted work (mostly originals made for commercial reasons are less protected than their purely artistic counterparts) - the amount and substantiality of the portion used in relation to the copyrighted work as a whole - the effect of the use upon the potential market for or value of the copyrighted work (as a general rule copying may be permitted if it is unlikely to cause economic harm to the original author) Examples of activities that may be excused as fair use include: providing a quotation in a book review; distributing copies of a section of an article in class for educational purposes; and imitating a work for the purpose of parody or social commentary. |
|
|
|
Digital Subscriber Line (DSL) DSL connections are high-speed data connections over copper wire telephone lines. As with cable connections, with DSL you can look up information on the Internet and make a phone call at the same time but you do not need to have a new or additional cable or line installed. One of the most prominent DSL services is ISDN (integrated services digital network, for more information click here ( |
|
|
|
Above.net Headquartered in San Jose, USA, AboveNet Communications is a http://www.above.net |
|
|
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
|
|
Saddam Hussein Saddam Hussein joined the revolutionary Baath party when he was a university student. In 1958 he had the head of Iraq, Abdul-Karim Qassim, killed. Since 1979 he has been President of Iraq. Under his reign Iraq fought a decade-long war with Iran. Because of his steady enmity with extreme Islamic leaders the West supported him first of all, until his army invaded Kuwait in August 1990, an incident that the USA led to the Gulf War. Since then many rumors about a coup d'état have been launched, but Saddam Hussein is still in unrestricted power. |
|
|
|
DMCA The DMCA (Digital Millennium Copyright Act) was signed into law by U.S. President Clinton in 1998 and implements the two 1996 |
|
|
|
CIM To perform manufacturing firm's functions related to design and production the CAD/CAM technology, for computer-aided design and computer-aided manufacturing, was developed. Today it is widely recognized that the scope of computer applications must extend beyond design and production to include the business functions of the firm. The name given to this more comprehensive use of computers is computer-integrated manufacturing (CIM). |
|
|
|
NSFNet Developed under the auspices of |
|
|
|
Optical communication system by Aeneas Tacitus, 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, |
|
|