Basics: Protected Persons

Generally copyright vests in the author of the work. Certain national laws provide for exceptions and, for example, regard the employer as the original owner of a copyright if the author was, when the work was created, an employee and employed for the purpose of creating that work. In the case of some types of creations, particularly audiovisual works, several national laws provide for different solutions to the question that should be the first holder of copyright in such works.

Many countries allow copyright to be assigned, which means that the owner of the copyright transfers it to another person or entity, which then becomes its holder. When the national law does not permit assignment it usually provides the possibility to license the work to someone else. Then the owner of the copyright remains the holder, but authorizes another person or entity to exercise all or some of his rights subject to possible limitations. Yet in any case the "moral rights" always belong to the author of the work, whoever may be the owner of the copyright (and therefore of the "economic rights").


TEXTBLOCK 1/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659527
 
Economic structure; transparent customers

Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people.

User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying.

"Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent."

(David Sobel, Electronic Privacy Information Center)

TEXTBLOCK 2/7 // URL: http://world-information.org/wio/infostructure/100437611726/100438658925
 
Biometrics applications: privacy issues

All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy.

Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control.

While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology.

The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; http://www.eds.com) are also suppliers of biometric systems to the intelligence agencies of government and industry.

Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks.

TEXTBLOCK 3/7 // URL: http://world-information.org/wio/infostructure/100437611729/100438658826
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 4/7 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Intellectual Property and the "Information Society" Metaphor

Today the talk about the so-called "information society" is ubiquitous. By many it is considered as the successor of the industrial society and said to represent a new form of societal and economical organization. This claim is based on the argument, that the information society uses a new kind of resource, which fundamentally differentiates from that of its industrial counterpart. Whereas industrial societies focus on physical objects, the information society's raw material is said to be knowledge and information. Yet the conception of the capitalist system, which underlies industrial societies, also continues to exist in an information-based environment. Although there have been changes in the forms of manufacture, the relations of production remain organized on the same basis. The principle of property.

In the context of a capitalist system based on industrial production the term property predominantly relates to material goods. Still even as in an information society the raw materials, resources and products change, the concept of property persists. It merely is extended and does no longer solely consider physical objects as property, but also attempts to put information into a set of property relations. This new kind of knowledge-based property is widely referred to as "intellectual property". Although intellectual property in some ways represents a novel form of property, it has quickly been integrated in the traditional property framework. Whether material or immaterial products, within the capitalist system they are both treated the same - as property.

TEXTBLOCK 5/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659429
 
History: European Tradition

Only in Roman times the first rights referring to artistic works appeared. Regulations resembling a lasting exclusive right to copy did not occur until the 17th century. Before copyright was a private arrangement between guilds able to reproduce copies in commercial quantities.

In France and Western European countries "droits d'auteur" or author's rights is the core of what in the Anglo-American tradition is called copyright. Such rights are rooted in the republican revolution of the late 18th century, and the Rights of Man movement. Today in the European system the creator is front and center; later exploiters are only secondary players.

France

During the 18th century France gradually lost the ability to restrict intellectual property. Before the Revolution, all books, printers and booksellers had to have a royal stamp of approval, called a "privilege". In return for their lucrative monopoly, the French guild of printers and booksellers helped the police to suppress anything that upset royal sensibilities or ran contrary to their interests. Still there were also a whole lot of underground printers who flooded the country with pirated, pornographic and seditious literature. And thousands of writers, most at the edge of starvation.

In 1777 the King threatened the monopoly by reducing the duration of publisher's privileges to the lifetime of the authors. Accordingly a writer's work would go into the public domain after his death and could be printed by anyone. The booksellers fought back by argumenting that, no authority could take their property from them and give it to someone else. Seven months later, in August 1789, the revolutionary government ended the privilege system and from that time on anyone could print anything. Early in 1790 Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet proposed giving authors power over their own work lasting until ten years after their deaths. The proposal - the basis for France's first modern copyright law - passed in 1793.

TEXTBLOCK 6/7 // URL: http://world-information.org/wio/infostructure/100437611725/100438659414
 
Acessing the Internet

The Net connections can be based on wire-line and wireless access technolgies.

Wire-line access

Wire-less access

copper wires

Satellites

coaxial cables

mobile terrestrial antennas

electric power lines

fixed terrestrial antennas

fiber-optic cables







Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables ISDN lines, etc., to an Internet Service Provider, from there, via fibre-optic cables, to the nearest Internet exchange, and on into a backbone network, tunneling across the continent und diving through submarine fibre-optic cables across the Atlantic to another Internet exchange, from there, via another backbone network and across another regional network to the Internet Service Provider of the supposed message recipient, from there via cables and wires of different bandwidth arriving at its destination, a workstation permanently connected to the Internet. Finally a sound or flashing icon informs your virtual neighbor that a new message has arrived.

Satellite communication

Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks.

Privatization of satellite communication

Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Intelsat, Intersputnik and Inmarsat.

Scheduled privatization of intergovernmental satellite consortia:

Satellite consortia

Year of foundation

Members

Scheduled date for privatization

Intelsat

1964

200 nations under the leadership of the USA

2001

Intersputnik

1971

23 nations under the leadership of Russia

?

Inmarsat

1979

158 nations (all members of the International Maritime Organization)

privatized since 1999

Eutelsat

1985

Nearly 50 European nations

2001



When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers.

As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost.

Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years.

Major satellite communication projects

Project name

Main investors

Expected cost

Number of satellites

Date of service start-up

Astrolink

Lockheed Martin, TRW, Telespazio, Liberty Media Group

US$ 3.6 billion

9

2003

Globalstar

13 investors including Loral Space & Communications, Qualcomm, Hyundai, Alcatel, France Telecom, China Telecom, Daimler Benz and Vodafone/Airtouch

US$ 3.26 billion

48

1998

ICO

57 investors including British Telecom, Deutsche Telecom, Inmarsat, TRW and Telefonica

US$ 4.5 billion

10

2001

Skybridge

9 investors including Alcatel Space, Loral Space & Communications, Toshiba, Mitsubishi and Sharp

US$ 6.7 billion

80

2002

Teledesic

Bill Gates, Craig McCaw, Prince Alwaleed Bin Talal Bin Abdul Aziz Alsaud, Abu Dhabi Investment Company

US$ 9 billion

288

2004


Source: Analysys Satellite Communications Database

TEXTBLOCK 7/7 // URL: http://world-information.org/wio/infostructure/100437611791/100438659839
 
Theoedore Roosevelt

With the assassination of President McKinley, Theodore Roosevelt (1858-1919), not quite 43, became the youngest President in the Nation's history. Roosevelt's youth differed sharply from that of the log cabin Presidents. He was born in New York City in 1858 into a wealthy family. Roosevelt steered the United States more actively into world politics. He liked to quote a favorite proverb, "Speak softly and carry a big stick. . . . "

He won the Nobel Peace Prize for mediating the Russo-Japanese War.

for more information see the official website:

http://www.whitehouse.gov/WH/glimpse/presidents/html/tr26.html

http://www.whitehouse.gov/WH/glimpse/presiden...
INDEXCARD, 1/8
 
Gaius Julius Caesar

Gaius Julius Caesar (100-44 BC) was a Roman Statesman who came to power through a military career and by buying of votes. His army won the civil war, run over Spain, Sicily and Egypt, where he made Cleopatra a Queen. For reaching even more power he increased the number of senators. But he also organized social measures to improve the people's food-situation. In February 44 BC he did not accept the kingship offered by Marc Anthony, which made him even more popular. One month later he was murdered during a senate sitting.

INDEXCARD, 2/8
 
Ku Klux Klan

The Ku Klux Klan has a long history of violence. It emerged out of the resentment and hatred many white Southerners. Black Americans are not considered human beings. While the menace of the KKK has peaked and waned over the years, it has never vanished.

INDEXCARD, 3/8
 
Netiquette

Although referred to as a single body of rules, there is not just one Netiquette, but there are several, though overlapping largely. Proposing general guidelines for posting messages to newsgroups and mailing lists and using the World Wide Web and FTP, Netiquettes address civility topics (i.e., avoiding hate speech) and comprise technical advises (i.e., using simple and platform-independent file formats).
Well-known Netiquettes are the Request for Comment #1855 and The Net: User Guidelines and Netiquette by Arlene H. Rinaldi.

ftp://ftp.isi.edu/in-notes/rfc1855.txt
http://www.fau.edu/netiquette/net/index.html
INDEXCARD, 4/8
 
Harold. D. Lasswell

Harold. D. Lasswell (* 1902) studied at the London School of Economics. He then became a professor of social sciences at different Universities, like the University of Chicago, Columbia University, and Yale University. He also was a consultant for several governments. One of Lasswell's many famous works was Propaganda Technique in World War. In this he defines propaganda. He also discussed major objectives of propaganda, like to mobilize hatred against the enemy, to preserve the friendship of allies, to procure the co-operation of neutrals and to demoralize the enemy.

INDEXCARD, 5/8
 
water-clocks

The water-clocks are an early long-distance-communication-system. Every communicating party had exactly the same jar, with a same-size-hole that was closed and the same amount of water in it. In the jar was a stick with different messages written on. When one party wanted to tell something to the other it made a fire-sign. When the other answered, both of them opened the hole at the same time. And with the help of another fire-sign closed it again at the same time, too. In the end the water covered the stick until the point of the wanted message.

INDEXCARD, 6/8
 
retouch

The retouch is the simplest way to change a picture. Small corrections can be made through this way.
A well-known example is the correction of a picture from a Bill Clinton-visit in Germany. In the background of the photograph stood some people, holding a sign with critical comments. In some newspapers the picture was printed like this, in others a retouch had erased the sign.
Another example happened in Austria in 1999:
The right wing party FPÖ had a poster for the Parliamentarian elections which said: 1999 reasons to vote for Haider. Others answered by producing a retouch saying: 1938 reasons to not vote for Haider (pointing to the year 1939, when the vast majority of the Austrians voted for the "Anschluss" to Germany).

INDEXCARD, 7/8
 
Machine vision

A branch of artificial intelligence and image processing concerned with the identification of graphic patterns or images that involves both cognition and abstraction. In such a system, a device linked to a computer scans, senses, and transforms images into digital patterns, which in turn are compared with patterns stored in the computer's memory. The computer processes the incoming patterns in rapid succession, isolating relevant features, filtering out unwanted signals, and adding to its memory new patterns that deviate beyond a specified threshold from the old and are thus perceived as new entities.

INDEXCARD, 8/8