Positions Towards the Future of Copyright in the "Digital Age" With the development of new transmission, distribution and publishing technologies and the increasing digitalization of information copyright has become the subject of vigorous debate. Among the variety of attitudes towards the future of traditional copyright protection two main tendencies can be identified: Eliminate Copyright Anti-copyrightists believe that any Enlarge Copyright Realizing the growing economic importance of intellectual property, especially the holders of copyright (in particular the big publishing, distribution and other | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basics: Protected Persons Generally copyright vests in the author of the work. Certain national laws provide for exceptions and, for example, regard the employer as the original owner of a copyright if the author was, when the work was created, an employee and employed for the purpose of creating that work. In the case of some types of creations, particularly audiovisual works, several national laws provide for different solutions to the question that should be the first holder of copyright in such works. Many countries allow copyright to be assigned, which means that the owner of the copyright transfers it to another person or entity, which then becomes its holder. When the national law does not permit assignment it usually provides the possibility to license the work to someone else. Then the owner of the copyright remains the holder, but authorizes another person or entity to exercise all or some of his rights subject to possible limitations. Yet in any case the " | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Acessing the Internet The Net connections can be based on wire-line and wireless access technolgies.
Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables Satellite communication Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks. Privatization of satellite communication Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Scheduled privatization of intergovernmental satellite consortia:
When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers. As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost. Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years. Major satellite communication projects
Source: Analysys Satellite Communications Database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Punch card, 1801 Invented by Joseph Marie Jacquard, an engineer and architect in Lyon, France, the punch cards laid the ground for automatic information processing. For the first time information was stored in binary format on perforated cardboard cards. In 1890 Hermann Hollerith used Joseph-Marie Jacquard's punch card technology for processing statistical data retrieved from the US census in 1890, thus speeding up data analysis from eight to three years. His application of Jacquard's invention was also used for programming computers and data processing until electronic data processing was introduced in the 1960's. - As with Paper tapes are a medium similar to Jacquard's punch cards. In 1857 Sir Charles Wheatstone applied them as a medium for the preparation, storage, and transmission of data for the first time. By their means, telegraph messages could be prepared off-line, sent ten times quicker (up to 400 words per minute), and stored. Later similar paper tapes were used for programming computers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Binary number system In mathematics, the term binary number system refers to a positional numeral system employing 2 as the base and requiring only two different symbols, 0 and 1. The importance of the binary system to information theory and computer technology derives mainly from the compact and reliable manner in which data can be represented in electromechanical devices with two states--such as "on-off," "open-closed," or "go-no go." | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fuzzy logic A superset of Boolean logic ( | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||