Timeline BC ~ 1900 BC: Egyptian writers use non-standard 1500 an enciphered formula for the production of pottery is done in Mesopotamia parts of the Hebrew writing of Jeremiah's words are written down in " 4th century 487 the Spartans introduce the so called " 170 50-60 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Timeline 1900-1970 AD 1913 the wheel cipher gets re-invented as a strip 1917 - an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys 1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin - Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected 1919 Hugo Alexander Koch invents a rotor cipher machine 1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded 1923 Arthur Scherbius founds an enterprise to construct and finally sell his late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly 1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts 1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939 1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of 1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett - at the same time the British develop the Typex machine, similar to the German Enigma machine 1943 Colossus, a code breaking computer is put into action at Bletchley Park 1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type 1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems 1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ) late 1960's the IBM Watson Research Lab develops the Lucifer cipher 1969 James Ellis develops a system of separate public-keys and private-keys | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4000 - 1000 B.C. 4th millennium B.C. In Sumer Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets were used for administrative purposes. As an instrument for the administrative bodies of early empires, which began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to only very few. Being more or less separated tasks, writing and calculating converge in today's computers. Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China. 3200 B.C. In Sumer the seal is invented. About 3000 B.C. In Egypt papyrus scrolls and About 1350 B.C. In Assyria the cuneiform script is invented. 1200 B.C. According to Aeschylus, the conquest of the town of Troy was transmitted via torch signals. About 1100 B.C. Egyptians use homing pigeons to deliver military information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Economic structure; transparent customers Following the dynamics of informatised economies, the consumption habits and lifestyles if customers are of great interest. New technologies make it possible to store and combine collected data of an enormous amount of people. User profiling helps companies understand what potential customers might want. Often enough, such data collecting takes place without the customer's knowledge and amounts to spying. "Much of the information collection that occurs on the Internet is invisible to the consumer, which raises serious questions of fairness and informed consent." (David Sobel, Electronic Privacy Information Center) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Acessing the Internet The Net connections can be based on wire-line and wireless access technolgies.
Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables Satellite communication Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks. Privatization of satellite communication Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Scheduled privatization of intergovernmental satellite consortia:
When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers. As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost. Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years. Major satellite communication projects
Source: Analysys Satellite Communications Database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intelsat Intelsat, the world's biggest communication satellite services provider, is still mainly owned by governments, but will be privatised during 2001, like http://www.intelsat.int/index.htm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The European Convention on Human Rights and its Five Protocols As can be read in the Convention's preamble, the member states of the Council of Europe, the European Convention on Human Rights is intended as a follow-up of the Universal Declaration of Human Rights proclaimed by the General Assembly of the United Nations on 10 December 1948 and as an official act of "securing the universal and effective recognition and observance of the Rights therein declared." Because it is stated "that the aim of the Council of Europe is the achievement of greater unity between its Members and that one of the methods by which the aim is to be pursued is the maintenance and further realization of Human Rights and Fundamental Freedoms", the European Convention on Human Rights can be read as the political sibling to the biblical Ten Commandments on which effective and legitimate European democratic government are based. The European Convention on Human Rights is intended to represent the essence of the common heritage of European political traditions and ideals. Signed in Rome on November 4, 1950, the Convention is supplemented by five protocols dated from March 20, 1952 (Paris), May 6, 1963, September 16, 1963, and January 20, 1966 (Strasbourg). http://www.hri.org/docs/ECHR50.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
plaintext the original, legible text | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
to decipher/decode to put the ciphers/codes back into the plaintext | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||