|
Basics: Acquisition of Copyright The laws of almost all countries provide that protection is independent of any formalities. Copyright protection then starts as soon as the work is created. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Acessing the Internet The Net connections can be based on wire-line and wireless access technolgies.
Usually several kinds of network connections are employed at once. Generally speaking, when an E-mail message is sent it travels from the user's computer via copper wires or coaxial cables Satellite communication Although facing competition from fiber-optic cables as cost-effective solutions for broadband data transmission services, the space industry is gaining increasing importance in global communications. As computing, telephony, and audiovisual technologies converge, new wireless technologies are rapidly deployed occupying an increasing market share and accelerating the construction of high-speed networks. Privatization of satellite communication Until recently transnational satellite communication was provided exclusively by intergovernmental organizations as Scheduled privatization of intergovernmental satellite consortia:
When Intelsat began to accumulate losses because of management failures and the increasing market share of fiber-optic cables, this organizational scheme came under attack. Lead by the USA, the Western industrialized countries successfully pressed for the privatization of all satellite consortia they are members of and for competition by private carriers. As of February 2000, there are 2680 satellites in service. Within the next four years a few hundred will be added by the new private satellite systems. Most of these systems will be so-called Low Earth Orbit satellite systems, which are capable of providing global mobile data services on a high-speed level at low cost. Because of such technological improvements and increasing competition, experts expect satellite-based broadband communication to be as common, cheap, and ubiquitous as satellite TV today within the next five or ten years. Major satellite communication projects
Source: Analysys Satellite Communications Database | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
UNIVAC Built by Remington Rand in 1951 the UNIVAC I (Universal Automatic Computer) was one of the first commercially available computers to take advantage of the development of the | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Alan Turing b. June 23, 1912, London, England d. June 7, 1954, Wilmslow, Cheshire English mathematician and logician who pioneered in the field of computer theory and who contributed important logical analyses of computer processes. Many mathematicians in the first decades of the 20th century had attempted to eliminate all possible error from mathematics by establishing a formal, or purely algorithmic, procedure for establishing truth. The mathematician Kurt Gödel threw up an obstacle to this effort with his incompleteness theorem. Turing was motivated by Gödel's work to seek an algorithmic method of determining whether any given propositions were undecidable, with the ultimate goal of eliminating them from mathematics. Instead, he proved in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem [Decision Problem]" (1936) that there cannot exist any such universal method of determination and, hence, that mathematics will always contain undecidable propositions. During World War II he served with the Government Code and Cypher School, at Bletchley, Buckinghamshire, where he played a significant role in breaking the codes of the German " | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Augustus Gaius Julius Caesar Octavian Augustus (63 BC - 14 AD) was adopted by | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||