Feeding the data body
|
TEXTBLOCK 1/10 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
|
|
Who owns the Internet and who is in charge?
The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet. The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g. Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers. Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily. Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed. For a detailed report on Internet governance, click here.
|
TEXTBLOCK 2/10 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
|
|
Transparent customers. Direct marketing online
This process works even better on the Internet because of the latter's interactive nature. "The Internet is a dream to direct marketers", said Wil Lansing, CEO of the American retailer Fingerhut Companies. Many services require you to register online, requiring users to provide as much information about them as possible. And in addition, the Internet is fast, cheap and used by people who tend to be young and on the search for something interesting.
Many web sites also are equipped with user tracking technology that registers a users behaviour and preferences during a visit. For example, user tracking technology is capable of identifying the equipment and software employed by a user, as well as movements on the website, visit of links etc. Normally such information is anonymous, but can be personalised when it is coupled with online registration, or when personal identifcation has been obtained from other sources. Registration is often a prerequisite not just for obtaining a free web mail account, but also for other services, such as personalised start pages. Based on the information provided by user, the start page will then include advertisements and commercial offers that correspond to the users profile, or to the user's activity on the website.
One frequent way of obtaining such personal information of a user is by offering free web mail accounts offered by a great many companies, internet providers and web portals (e.g. Microsoft, Yahoo, Netscape and many others). In most cases, users get "free" accounts in return for submitting personal information and agreeing to receive marketing mails. Free web mail accounts are a simple and effective direct marketing and data capturing strategy which is, however, rarely understood as such. However, the alliances formed between direct advertising and marketing agencies on the one hand, and web mail providers on the other hand, such as the one between DoubleClick and Yahoo, show the common logic of data capturing and direct marketing. The alliance between DoubleClick and Yahoo eventually attracted the US largest direct marketing agency, Abacus Direct, who ended up buying DoubleClick.
However, the intention of collecting users personal data and create consumer profiles based on online behaviour can also take on more creative and playful forms. One such example is sixdegrees.com. This is a networking site based on the assumption that everybody on the planet is connected to everybody else by a chain of six people at most. The site offers users to get to know a lot of new people, the friends of their friends of their friends, for example, and if they try hard enough, eventually Warren Beatty or Claudia Schiffer. But of course, in order to make the whole game more useful for marketing purposes, users are encouraged to join groups which share common interests, which are identical with marketing categories ranging from arts and entertainment to travel and holiday. Evidently, the game becomes more interesting the more new people a user brings into the network. What seems to be fun for the 18 to 24 year old college student customer segment targeted by sixdegrees is, of course, real business. While users entertain themselves they are being carefully profiled. After all, data of young people who can be expected to be relatively affluent one day are worth more than money.
The particular way in which sites such as sixdegrees.com and others are structured mean that not only to users provide initial information about them, but also that this information is constantly updated and therefore becomes even more valuable. Consequently, many free online services or web mail providers cancel a user's account if it has not been uses for some time.
There are also other online services which offer free services in return for personal information which is then used for marketing purposes, e.g. Yahoo's Geocities, where users may maintain their own free websites, Bigfoot, where people are offered a free e-mail address for life, that acts as a relais whenever a customer's residence or e-mail address changes. In this way, of course, the marketers can identify friendship and other social networks, and turn this knowledge into a marketing advantage. People finders such as WhoWhere? operate along similar lines.
A further way of collecting consumer data that has recently become popular is by offering free PCs. Users are provided with a PC for free or for very little money, and in return commit themselves to using certain services rather than others (e.g. a particular internet provider), providing information about themselves, and agree to have their online behaviour monitored by the company providing the PC, so that accurate user profiles can be compiled. For example, the Free PC Network offers advertisers user profiles containing "over 60 individual demographics". There are literally thousands of variations of how a user's data are extracted and commercialised when online. Usually this happens quietly in the background.
A good inside view of the world of direct marketing can be gained at the website of the American Direct Marketing Association and the Federation of European Direct Marketing.
|
TEXTBLOCK 3/10 // URL: http://world-information.org/wio/infostructure/100437611761/100438659667
|
|
Biometric applications: surveillance
Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.
Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.
Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.
|
TEXTBLOCK 4/10 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
|
|
Late 1950s - Early 1960s: Second Generation Computers
An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.
Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.
Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.
|
TEXTBLOCK 5/10 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
|
|
2000 A.D.
2000
Convergence of telephony, audiovisual technologies and computing
Digital technologies are used to combine previously separated communication and media systems such as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence".
Classical dichotomies as the one of computing and telephony and traditional categorizations no longer apply, because these new services no longer fit traditional categories.
Convergence and Regulatory Institutions
Digital technology permits the integration of telecommunications with computing and audiovisual technologies. New services that extend existing communication systems emerge. The convergence of communication and media systems corresponds to a convergence of corporations. Recently, America Online, the world's largest online service provider, merged with Time Warner, the world's largest media corporation. For such corporations the classical approach to regulation - separate institutions regulate separate markets - is no longer appropriate, because the institutions' activities necessarily overlap. The current challenges posed to these institutions are not solely due to the convergence of communication and media systems made possible by digital technologies; they are also due to the liberalization and internationalization of the electronic communications sector. For regulation to be successful, new categorizations and supranational agreements are needed. For further information on this issue see Natascha Just and Michael Latzer, The European Policy Response to Convergence with Special Consideration of Competition Policy and Market Power Control, http://www.soe.oeaw.ac.at/workpap.htm or http://www.soe.oeaw.ac.at/WP01JustLatzer.doc.
|
TEXTBLOCK 6/10 // URL: http://world-information.org/wio/infostructure/100437611796/100438659802
|
|
Legal Protection: TRIPS (Trade-Related Aspects of Intellectual Property Rights)
Another important multilateral treaty concerned with intellectual property rights is the TRIPS agreement, which was devised at the inauguration of the Uruguay Round negotiations of the WTO in January 1995. It sets minimum standards for the national protection of intellectual property rights and procedures as well as remedies for their enforcement (enforcement measures include the potential for trade sanctions against non-complying WTO members). The TRIPS agreement has been widely criticized for its stipulation that biological organisms be subject to intellectual property protection. In 1999, 44 nations considered it appropriate to treat plant varieties as intellectual property.
The complete TRIPS agreement can be found on: http://www.wto.org/english/tratop_e/trips_e/t_agm1_e.htm
|
TEXTBLOCK 7/10 // URL: http://world-information.org/wio/infostructure/100437611725/100438659758
|
|
Challenges for Copyright by ICT: Digital Content Providers
Providers of digital information might be confronted with copyright related problems when using some of the special features of hypertext media like frames and hyperlinks (which both use third party content available on the Internet to enhance a webpage or CD ROM), or operate a search engine or online directory on their website.
Framing
Frames are often used to help define, and navigate within, a content provider's website. Still, when they are used to present (copyrighted) third party material from other sites issues of passing off and misleading or deceptive conduct, as well as copyright infringement, immediately arise.
Hyperlinking
It is generally held that the mere creation of a hyperlink does not, of itself, infringe copyright as usually the words indicating a link or the displayed URL are unlikely to be considered a "work". Nevertheless if a link is clicked on the users browser will download a full copy of the material at the linked address creating a copy in the RAM of his computer courtesy of the address supplied by the party that published the link. Although it is widely agreed that the permission to download material over the link must be part of an implied license granted by the person who has made the material available on the web in the first place, the scope of this implied license is still the subject of debate. Another option that has been discussed is to consider linking fair use.
Furthermore hyperlinks, and other "information location tools", like online directories or search engines could cause their operators trouble if they refer or link users to a site that contains infringing material. In this case it is yet unclear whether providers can be held liable for infringement.
|
TEXTBLOCK 8/10 // URL: http://world-information.org/wio/infostructure/100437611725/100438659590
|
|
In Search of Reliable Internet Measurement Data
Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.
Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.
Size and Growth
In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).
So his statement is a slap in the face of all market researchers stating otherwise. In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand. So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools. "There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available. What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet. You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.
Hosts
The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data. Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.
Internet Weather
Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.
Hits, Page Views, Visits, and Users
Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed. For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate. In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.
Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal. More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle. But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client- server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.
For
If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.
Measuring the Density of IP Addresses
Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom ( http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html). Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.
|
TEXTBLOCK 9/10 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
|
|
Identificaiton in history
In biometric technology, the subject is reduced to its physical and therefore inseparable properties. The subject is a subject in so far as it is objectified; that is, in so far as is identified with its own res extensa, Descartes' "extended thing". The subject exists in so far as it can be objectified, if it resists the objectification that comes with measurement, it is rejected or punished. Biometrics therefore provides the ultimate tool for control; in it, the dream of hermetic identity control seems to become a reality, a modern technological reconstruction of traditional identification techniques such as the handshake or the look into somebody's eyes.
The use of identification by states and other institutions of authority is evidently not simply a modern phenomenon. The ancient Babylonians and Chinese already made use of finger printing on clay to identify authors of documents, while the Romans already systematically compared handwritings.
Body measurement has long been used by the military. One of the first measures after entering the military is the identification and appropriation of the body measurements of a soldier. These measurements are filed and combined with other data and make up what today we would call the soldier's data body. With his data body being in possession of the authority, a soldier is no longer able freely socialise and is instead dependent on the disciplinary structure of the military institution. The soldier's social being in the world is defined by the military institution.
However, the military and civilian spheres of modern societies are no longer distinct entities. The very ambivalence of advanced technology (dual use technologies) has meant that "good" and "bad" uses of technology can no longer be clearly distinguished. The measurement of physical properties and the creation of data bodies in therefore no longer a military prerogative, it has become diffused into all areas of modern societies.
If the emancipatory potential of weak identities is to be of use, it is therefore necessary to know how biometric technologies work and what uses they are put to.
|
TEXTBLOCK 10/10 // URL: http://world-information.org/wio/infostructure/100437611729/100438658096
|
|
RIPE
The RIPE Network Coordination Centre (RIPE NCC) is one of three Regional Internet
Registries (RIR), which exist in the world today, providing allocation and registration services which support the operation of the Internet globally, mainly the allocation of IP address space for Europe.
http://www.ripe.net
|
INDEXCARD, 1/14
|
|
DMCA
The DMCA (Digital Millennium Copyright Act) was signed into law by U.S. President Clinton in 1998 and implements the two 1996 WIPO treaties (WIPO Performances and Phonograms Treaty and WIPO Copyright Treaty). Besides other issues the DMCA addresses the influence of new technologies on traditional copyright. Of special interest in the context of the digitalization of intellectual property are the titles no. 2, which refers to the limitation on the liability of online service providers for copyright infringement (when certain conditions are met), no. 3, that creates an exemption for making a copy of a computer program in case of maintenance and repair, and no. 4 which is concerned with the status of libraries and webcasting. The DCMA has been widely criticized for giving copyright-holders even more power and damage the rights and freedom of consumers, technological innovation, and the free market for information.
|
INDEXCARD, 2/14
|
|
Technological measures
As laid down in the proposed EU Directive on copyright and related rights in the information society technological measures mean "... any technology, device, or component that, in the normal course of its operations, is designed to prevent or inhibit the infringement of any copyright..." The U.S. DMCA (Digital Millennium Copyright Act) divides technological measures in two categories: 1) measures that prevent unauthorized access to a copyrighted work, and 2) measures that prevent unauthorized copying of a copyrighted work. Also the making or selling of devices or services that can be used to circumvent either category of technological measures is prohibited under certain circumstances in the DMCA. Furthermore the 1996 WIPO Copyright Treaty states that the "... contracting parties shall provide adequate legal protection and effective legal remedies against the circumvention of effective technological measures that are used by authors..."
|
INDEXCARD, 3/14
|
|
Automation
Automation is concerned with the application of machines to tasks once performed by humans or, increasingly, to tasks that would otherwise be impossible. Although the term mechanization is often used to refer to the simple replacement of human labor by machines, automation generally implies the integration of machines into a self-governing system. Automation has revolutionized those areas in which it has been introduced, and there is scarcely an aspect of modern life that has been unaffected by it. Nearly all industrial installations of automation, and in particular robotics, involve a replacement of human labor by an automated system. Therefore, one of the direct effects of automation in factory operations is the dislocation of human labor from the workplace. The long-term effects of automation on employment and unemployment rates are debatable. Most studies in this area have been controversial and inconclusive. As of the early 1990s, there were fewer than 100,000 robots installed in American factories, compared with a total work force of more than 100 million persons, about 20 million of whom work in factories.
|
INDEXCARD, 4/14
|
|
VISA
Visa International's over 21,000 member financial institutions have made VISA one of the world's leading full-service payment network. Visa's products and services include Visa Classic card, Visa Gold card, Visa debit cards, Visa commercial cards and the Visa Global ATM Network. VISA operates in 300 countries and territories and also provides a large consumer payments processing system.
|
INDEXCARD, 5/14
|
|
Internet Protocol Number (IP Number)
Every computer using TCP/IP has a 32 bit-Internet address, an IP number. This number consists of a network identifier and of a host identifier. The network identifier is registered at and allocated by a Network Information Center (NIC), the host identifier is allocated by the local network administration.
IP numbers are divided into three classes. Class A is restricted for big-sized organizations, Class B to medium-sized ones as universities, and Class C is dedicated to small networks.
Because of the increasing number of networks worldwide, networks belonging together, as LANs forming a corporate network, are allocated a single IP number.
|
INDEXCARD, 6/14
|
|
Netiquette
Although referred to as a single body of rules, there is not just one Netiquette, but there are several, though overlapping largely. Proposing general guidelines for posting messages to newsgroups and mailing lists and using the World Wide Web and FTP, Netiquettes address civility topics (i.e., avoiding hate speech) and comprise technical advises (i.e., using simple and platform-independent file formats). Well-known Netiquettes are the Request for Comment #1855 and The Net: User Guidelines and Netiquette by Arlene H. Rinaldi.
ftp://ftp.isi.edu/in-notes/rfc1855.txt
http://www.fau.edu/netiquette/net/index.html
|
INDEXCARD, 7/14
|
|
Internet Society
Founded in 1992, the Internet Society is an umbrella organization of several mostly self-organized organizations dedicated to address the social, political, and technical issues, which arise as a result of the evolution and the growth of the Net. Its most important subsidiary organizations are the Internet Architecture Board, the Internet Engineering Steering Group, the Internet Engineering Task Force, the Internet Research Task Force, and the Internet Societal Task Force.
Its members comprise companies, government agencies, foundations, corporations and individuals. The Internet Society is governed by elected trustees.
http://www.isoc.org
http://www.isoc.org/
|
INDEXCARD, 8/14
|
|
Economic rights
The economic rights (besides moral rights and in some cases also neighboring rights) granted to the owners of copyright usually include 1) copying or reproducing a work, 2) performing a work in public, 3) making a sound recording of a work, 4) making a motion picture of a work, 5) broadcasting a work, 6) translating a work and 7) adapting a work. Under certain national laws some of these rights are not exclusive rights of authorization but in specific cases, merely rights to remuneration.
|
INDEXCARD, 9/14
|
|
National Science Foundation (NSF)
Established in 1950, the National Science Foundation is an independent agency of the U.S. government dedicated to the funding in basic research and education in a wide range of sciences and in mathematics and engineering. Today, the NSF supplies about one quarter of total federal support of basic scientific research at academic institutions.
http://www.nsf.gov
For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/0/0,5716,2450+1+2440,00.html
http://www.nsf.gov/
|
INDEXCARD, 10/14
|
|
Intellectual property
Intellectual property, very generally, relates to the output that result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) industrial property ( inventions, marks, industrial designs, unfair competition and geographical indications), and 2) copyright. The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products.
|
INDEXCARD, 11/14
|
|
Ron Rivest
Ronald L. Rivest is Webster Professor of Electrical Engineering and Computer Science in MIT's EECS Department. He was one of three persons in a team to invent the RSA public-key cryptosystem. The co-authors were Adi Shamir and Leonard M. Adleman.
|
INDEXCARD, 12/14
|
|
Leonard M. Adleman
Leonard M. Adleman was one of three persons in a team to invent the RSA public-key cryptosystem. The co-authors were Adi Shamir and Ron Rivest.
|
INDEXCARD, 13/14
|
|
Invention
According to the WIPO an invention is a "... novel idea which permits in practice the solution of a specific problem in the field of technology." Concerning its protection by law the idea "... must be new in the sense that is has not already been published or publicly used; it must be non-obvious in the sense that it would not have occurred to any specialist in the particular industrial field, had such a specialist been asked to find a solution to the particular problem; and it must be capable of industrial application in the sense that it can be industrially manufactured or used." Protection can be obtained through a patent (granted by a government office) and typically is limited to 20 years.
|
INDEXCARD, 14/14
|
|