1970s: Computer-Integrated Manufacturing (CIM)

Since the 1970s there had been a growing trend towards the use of computer programs in manufacturing companies. Especially functions related to design and production, but also business functions should be facilitated through the use of computers.

Accordingly the CAD/CAM technology, related to the use of computer systems for design and production, was developed. CAD (computer-aided design) was created to assist in the creation, modification, analysis, and optimization of design. CAM (computer-aided manufacturing) was designed to help with the planning, control, and management of production operations. CAD/CAM technology, since the 1970s, has been applied in many industries, including machined components, electronics products, equipment design and fabrication for chemical processing.

To enable a more comprehensive use of computers in firms the CIM (computer-integrated manufacturing) technology, which also includes applications concerning the business functions of companies, was created. CIM systems can handle order entry, cost accounting, customer billing and employee time records and payroll. The scope of CIM technology includes all activities that are concerned with production. Therefore in many ways CIM represents the highest level of automation in manufacturing.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659495
 
Commercial vs. Independent Content: Power and Scope

Regarding the dimension of their financial and human resources commercial media companies are at any rate much more powerful players than their independent counterparts. Still those reply with an extreme multiplicity and diversity. Today thousands of newsgroups, mailing-list and e-zines covering a wide range of issues from the environment to politics, social and human rights, culture, art and democracy are run by alternative groups.

Moreover independent content provider have started to use digital media for communication, information and co-ordination long before they were discovered by corporate interest. They regularly use the Internet and other networks to further public discourse and put up civic resistance. And in many cases are very successful with their work, as initiatives like widerst@ndMUND's (AT) co-ordination of the critics of the participation of the Freedom Party in the Austrian government via mailing-lists, an online-magazine and discussion forums, show.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611734/100438659198
 
Governmental Regulations

The new U.S. regulations are based on the Wassenaar Arrangement Revision of 1998, where exports without license of 56 bit DES and similar products are allowed after a technical review, just like encryption commodities and software with key lengths of 64-bits or less which meet the mass market requirements.
For more information see:
http://www.wassenaar.org/

Seven states stay excluded from the new freedom. These are states like Libya, Iraq, Iran, North Korea and Cuba, altogether states seen as terrorist supporting. No encryption tools may be exported into those countries.

This is, what happened in the USA, whereas in Germany the issue of a cryptography-law is still on the agenda. Until now, in Germany, everyone can decide by her-/himself, whether she/he wants to encrypt electronic messages or not. Some organizations fear that this could get changed soon. Therefore an urgent action was organized in February 2000 to demonstrate the government that people want the freedom to decide on their own. One governmental argument is that only very few people actually use cryptography. Therefore the urgent action is organized as a campaign for using it more frequently.

For more information on this see:
http://www.heise.de/ct/97/04/032/
http://www.fitug.de/ulf/krypto/verbot.html#welt

Other European countries have more liberate laws on cryptography, like France. Austria doesn't have any restrictions at all, probably because of a governmental lack of interest more than accepting freedom.
The (former) restrictions in the bigger countries influenced and hindered developments for safer key-systems, e.g. the key-length was held down extraordinarily.

"Due to the suspicious nature of crypto users I have a feeling DES will be with us forever, we will just keep adding keys and cycles (...). There is a parallel between designing electronic commerce infrastructure today that uses weak cryptography (i.e. 40 or 56 bit keys) and, say, designing air traffic control systems in the '60s using two digit year fields. (...) Just because you can retire before it all blows up doesn't make it any less irresponsible."
(Arnold G. Reinhold)


The Chinese State Encryption Management Commission (SEMC) announced in March 2000 that only strong encryption tools will have to be registered in the future. Which sounds so nice on first sight, does not mean a lot in reality: any kind of useful encryption technique, like the PGP, stay under governmental control.

The restrictions and prohibitions for cryptography are part of the states' wish to acquire more control - in the name of the battle against criminality, probably?
Due to the emerging organized criminality the governments want to obtain more freedom of control over citizens. Organizations like the NSA appear as the leaders of such demands.
What about civil rights or Human Rights?

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438659135
 
biotechnology summary

The fusion of flesh and machine is trend which, although inscribed in the history of modern technology from its beginnings, has reached a unprecedented momentum in recent years as a result of crucial advances in information technology, biology, and the development of global networks. Consequently, doubts are emerging concerning the viability of a distinct and definable human nature. Historical and social theories and concepts are being unhinged by the spread hybrids and by new forms of artificial life which are likely to trigger social changes escaping the grip of calculation. Attempts to defend an essential human nature against technical hybridisation, rather than strengthening the human subject, may have further blurred the question of historical subjectivity. Large amounts of money are invested into research and development of artifical biology, making some of the predictions of AI and robotics experts about radical and far reaching changes a matter of time.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611777/100438658143
 
Mark

A mark (trademark or service mark) is "... a sign, or a combination of signs, capable of distinguishing the goods or services of one undertaking from those of other undertakings. The sign may particularly consist of one or more distinctive words, letters, numbers, drawings or pictures, emblems, colors or combinations of colors, or may be three-dimensional..." (WIPO) To be protected a mark must be registered in a government office whereby generally the duration is limited in time, but can be periodically (usually every 10 years) renewed.

INDEXCARD, 1/5
 
Invention

According to the WIPO an invention is a "... novel idea which permits in practice the solution of a specific problem in the field of technology." Concerning its protection by law the idea "... must be new in the sense that is has not already been published or publicly used; it must be non-obvious in the sense that it would not have occurred to any specialist in the particular industrial field, had such a specialist been asked to find a solution to the particular problem; and it must be capable of industrial application in the sense that it can be industrially manufactured or used." Protection can be obtained through a patent (granted by a government office) and typically is limited to 20 years.

INDEXCARD, 2/5
 
MIT

The MIT (Massachusetts Institute of Technology) is a privately controlled coeducational institution of higher learning famous for its scientific and technological training and research. It was chartered by the state of Massachusetts in 1861 and became a land-grant college in 1863. During the 1930s and 1940s the institute evolved from a well-regarded technical school into an internationally known center for scientific and technical research. In the days of the Great Depression, its faculty established prominent research centers in a number of fields, most notably analog computing (led by Vannevar Bush) and aeronautics (led by Charles Stark Draper). During World War II, MIT administered the Radiation Laboratory, which became the nation's leading center for radar research and development, as well as other military laboratories. After the war, MIT continued to maintain strong ties with military and corporate patrons, who supported basic and applied research in the physical sciences, computing, aerospace, and engineering. MIT has numerous research centers and laboratories. Among its facilities are a nuclear reactor, a computation center, geophysical and astrophysical observatories, a linear accelerator, a space research center, supersonic wind tunnels, an artificial intelligence laboratory, a center for cognitive science, and an international studies center. MIT's library system is extensive and includes a number of specialized libraries; there are also several museums.

INDEXCARD, 3/5
 
Intellectual property

Intellectual property, very generally, relates to the output that result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches: 1) industrial property (inventions, marks, industrial designs, unfair competition and geographical indications), and 2) copyright. The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products.

INDEXCARD, 4/5
 
CIM

To perform manufacturing firm's functions related to design and production the CAD/CAM technology, for computer-aided design and computer-aided manufacturing, was developed. Today it is widely recognized that the scope of computer applications must extend beyond design and production to include the business functions of the firm. The name given to this more comprehensive use of computers is computer-integrated manufacturing (CIM).

INDEXCARD, 5/5