Basics: Protected Works Usually the subject matter of copyright is described as "literary and artistic works" - original creations in the fields of literature and arts. Such works may be expressed in words, symbols, pictures, music, three-dimensional objects, or combinations thereof. Practically all national copyright laws provide for the protection of the following types of works: Literary works: novels, poems dramatic works and any other writings, whether published or unpublished; in most countries also computer programs and "oral works" Musical works Artistic works: whether two-dimensional or three-dimensional; irrespective of their content and destination Maps and technical drawings Photographic works: irrespective of the subject matter and the purpose for which made Audiovisual works: irrespective of their purpose, genre, length, method employed or technical process used Some copyright laws also provide for the protection of choreographic works, derivative works (translations, adaptions), collections (compilations) of works and mere data (data bases); collections where they, by reason of the selection and arrangement of the contents, constitute intellectual creations. Furthermore in some countries also "works of applied art" (furniture, wallpaper etc.) and computer programs (either as literary works or independently) constitute copyrightable matter. Under certain national legislations the notion "copyright" has a wider meaning than "author's rights" and, in addition to literary and artistic works, also extends to the producers of sound recordings, the broadcasters of broadcasts and the creators of distinctive typographical arrangements of publications. |
|
1000 B.C. - 0 900 B.C. A postal service is used for governmental purposes in China. 500 B.C. In ancient Greece trumpets, drums, shouting, beacon, fires, smoke signals, and mirrors are used for message transmission. 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of a message transmission while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by a torch signal that the appropriate water level had been reached. The methods disadvantage was that the possible messages were restricted to a given code, but as the system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand the messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, 3rd century B.C. Wax tablets are used as writing material in Mesopotamia, ancient Greece, and Etruria. 2nd century B.C. In China paper is invented. 1st century B.C. The use of codices instead of scrolls - basically the hardcover book as we know it today - is an essential event in European history. To quote accurately by page number, to browse through pages and to skip chapters - things that were impossible when reading scrolls - becomes possible. In the computer age we are witnesses to a kind of revival of the scrolls as we scroll up and down a document. The introduction of hypertext possibly marks the beginning of a similar change as has taken place with the substitution of scrolls with codices. |
|
4000 - 1000 B.C. 4th millennium B.C. In Sumer Writing and calculating came into being at about the same time. The first pictographs carved into clay tablets were used for administrative purposes. As an instrument for the administrative bodies of early empires, which began to rely on the collection, storage, processing and transmission of data, the skill of writing was restricted to only very few. Being more or less separated tasks, writing and calculating converge in today's computers. Letters are invented so that we might be able to converse even with the absent, says Saint Augustine. The invention of writing made it possible to transmit and store information. No longer the ear predominates; face-to-face communication becomes more and more obsolete for administration and bureaucracy. Standardization and centralization become the constituents of high culture and vast empires as Sumer and China. 3200 B.C. In Sumer the seal is invented. About 3000 B.C. In Egypt papyrus scrolls and About 1350 B.C. In Assyria the cuneiform script is invented. 1200 B.C. According to Aeschylus, the conquest of the town of Troy was transmitted via torch signals. About 1100 B.C. Egyptians use homing pigeons to deliver military information. |
|
Key-Systems As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce. Key cryptosystems try to provide more privacy. symmetric-key cryptosystems: The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it? In former times messengers or pigeons were doing the exchange of those keys. Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated. Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms. some symmetric-key systems are: - DES (Data Encryption Standard), the standard for credit cards - Triple-DES, which is a variation of DES, encrypting the plaintext three times. - IDEA (International Data Encryption Standard) - blowfish encryption algorithm, which is said to be faster than DES and IDEA Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not. For further information see: |
|
Enigma Device used by the German military command to encode strategic messages before and during World War II. The Enigma code was broken by a British intelligence system known as Ultra. |
|
Punch card, 1801 Invented by Joseph Marie Jacquard, an engineer and architect in Lyon, France, the punch cards laid the ground for automatic information processing. For the first time information was stored in binary format on perforated cardboard cards. In 1890 Hermann Hollerith used Joseph-Marie Jacquard's punch card technology for processing statistical data retrieved from the US census in 1890, thus speeding up data analysis from eight to three years. His application of Jacquard's invention was also used for programming computers and data processing until electronic data processing was introduced in the 1960's. - As with Paper tapes are a medium similar to Jacquard's punch cards. In 1857 Sir Charles Wheatstone applied them as a medium for the preparation, storage, and transmission of data for the first time. By their means, telegraph messages could be prepared off-line, sent ten times quicker (up to 400 words per minute), and stored. Later similar paper tapes were used for programming computers. |
|
Integrated circuit Also called microcircuit, the integrated circuit is an assembly of electronic components, fabricated as a single unit, in which active semiconductor devices ( |
|
Chappe's fixed optical network Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|