Convergence

TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611795/100438659138
 
Timeline 1970-2000 AD

1971 IBM's work on the Lucifer cipher and the work of the NSA lead to the U.S. Data Encryption Standard (= DES)

1976 Whitfield Diffie and Martin Hellman publish their book New Directions in Cryptography, playing with the idea of public key cryptography

1977/78 the RSA algorithm is developed by Ron Rivest, Adi Shamir and Leonard M. Adleman and is published

1984 Congress passes Comprehensive Crime Control Act

- The Hacker Quarterly is founded

1986 Computer Fraud and Abuse Act is passed in the USA

- Electronic Communications Privacy Act

1987 Chicago prosecutors found Computer Fraud and Abuse Task Force

1988 U.S. Secret Service covertly videotapes a hacker convention

1989 NuPrometheus League distributes Apple Computer software

1990 - IDEA, using a 128-bit key, is supposed to replace DES

- Charles H. Bennett and Gilles Brassard publish their work on Quantum Cryptography

- Martin Luther King Day Crash strikes AT&T long-distance network nationwide


1991 PGP (= Pretty Good Privacy) is released as freeware on the Internet, soon becoming worldwide state of the art; its creator is Phil Zimmermann

- one of the first conferences for Computers, Freedom and Privacy takes place in San Francisco

- AT&T phone crash; New York City and various airports get affected

1993 the U.S. government announces to introduce the Clipper Chip, an idea that provokes many political discussions during the following years

1994 Ron Rivest releases another algorithm, the RC5, on the Internet

- the blowfish encryption algorithm, a 64-bit block cipher with a key-length up to 448 bits, is designed by Bruce Schneier

1990s work on quantum computer and quantum cryptography

- work on biometrics for authentication (finger prints, the iris, smells, etc.)

1996 France liberates its cryptography law: one now can use cryptography if registered

- OECD issues Cryptography Policy Guidelines; a paper calling for encryption exports-standards and unrestricted access to encryption products

1997 April European Commission issues Electronic Commerce Initiative, in favor of strong encryption

1997 June PGP 5.0 Freeware widely available for non-commercial use

1997 June 56-bit DES code cracked by a network of 14,000 computers

1997 August U.S. judge assesses encryption export regulations as violation of the First Amendment

1998 February foundation of Americans for Computer Privacy, a broad coalition in opposition to the U.S. cryptography policy

1998 March PGP announces plans to sell encryption products outside the USA

1998 April NSA issues a report about the risks of key recovery systems

1998 July DES code cracked in 56 hours by researchers in Silicon Valley

1998 October Finnish government agrees to unrestricted export of strong encryption

1999 January RSA Data Security, establishes worldwide distribution of encryption product outside the USA

- National Institute of Standards and Technologies announces that 56-bit DES is not safe compared to Triple DES

- 56-bit DES code is cracked in 22 hours and 15 minutes

1999 May 27 United Kingdom speaks out against key recovery

1999 Sept: the USA announce to stop the restriction of cryptography-exports

2000 as the German government wants to elaborate a cryptography-law, different organizations start a campaign against that law

- computer hackers do no longer only visit websites and change little details there but cause breakdowns of entire systems, producing big economic losses

for further information about the history of cryptography see:
http://www.clark.net/pub/cme/html/timeline.html
http://www.math.nmsu.edu/~crypto/Timeline.html
http://fly.hiwaay.net/~paul/cryptology/history.html
http://www.achiever.com/freehmpg/cryptology/hocryp.html
http://all.net/books/ip/Chap2-1.html
http://cryptome.org/ukpk-alt.htm
http://www.iwm.org.uk/online/enigma/eni-intro.htm
http://www.achiever.com/freehmpg/cryptology/cryptofr.html
http://www.cdt.org/crypto/milestones.shtml

for information about hacker's history see:
http://www.farcaster.com/sterling/chronology.htm:

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438658960
 
Commercial vs. Independent Content: Human and Financial Resources

- Concerning their human and financial resources commercial media and independent content provider are an extremely unequal pair. While the 1998 revenues of the world's leading media conglomerates (AOL Time Warner, Disney, Bertelsmann, Viacom and the News Corporation) amounted to US$ 91,144,000,000 provider of independent content usually act on a non-profit basis and to a considerable extent depend on donations and contributions.

Also the human resources they have at their disposal quite differ. Viacom for example employs 112,000 people. Alternative media conversely are mostly run by a small group of activists, most of them volunteers. Moreover the majority of the commercial media giants has a multitude of subsidiaries (Bertelsmann for instance has operations in 53 countries), while independent content provider in some cases do not even have proper office spaces. Asked about their offices number of square meters Frank Guerrero from RTMark comments "We have no square meters at all, because we are only on the web. I guess if you add up all of our servers and computers we would take up about one or two square meters."

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611795/100438659146
 
1400 - 1500 A.D.

1455
Johannes Gutenberg publishes the Bible as the first book in Europe by means of a movable metal font.

Gutenberg's printing press was an innovative aggregation of inventions known for centuries before Gutenberg: the olive oil press, oil-based ink, block-print technology, and movable types allowed the mass production of the movable type used to reproduce a page of text and enormously increased the production rate. During the Middle Ages it took monks at least a year to make a handwritten copy of a book. Gutenberg could print about 300 sheets per day. Because parchment was too costly for mass production - for the production of one copy of a medieval book often a whole flock of sheep was used - it was substituted by cheap paper made from recycled clothing of the massive number of deads caused by the Great Plague.

Within forty-five years, in 1500, ten million copies were available for a few hundred thousand literate people. Because individuals could examine a range of opinions now, the printed Bible - especially after having been translated into German by Martin Luther - and increasing literacy added to the subversion of clerical authorities. The interest in books grew with the rise of vernacular, non-Latin literary texts, beginning with Dante's Divine Comedy, the first literary text written in Italian.

Among others the improvement of the distribution and production of books as well as increased literacy made the development of print mass media possible.

Michael Giesecke (Sinnenwandel Sprachwandel Kulturwandel. Studien zur Vorgeschichte der Informationsgesellschaft, Frankfurt am Main: Suhrkamp, 1992) has shown that due to a division of labor among authors, printers and typesetters Gutenberg's invention increasingly led to a standardization of - written and unwritten - language in form of orthography, grammar and signs. To communicate one's ideas became linked to the use of a code, and reading became a kind of rite of passage, an important step towards independency in a human's life.

With the growing linkage of knowledge to reading and learning, the history of knowledge becomes the history of reading, of reading dependent on chance and circumstance.

For further details see:
Martin Warnke, Text und Technik, http://www.uni-lueneburg.de/
Bruce Jones, Manuscripts, Books, and Maps: The Printing Press and a Changing World, http://communication.ucsd.edu/bjones/Books/booktext.html

TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611796/100438659777
 
Timeline 1900-1970 AD

1913 the wheel cipher gets re-invented as a strip

1917 William Frederick Friedman starts working as a cryptoanalyst at Riverbank Laboratories, which also works for the U.S. Government. Later he creates a school for military cryptoanalysis

- an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys

1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin

- Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected

1919 Hugo Alexander Koch invents a rotor cipher machine

1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded

1923 Arthur Scherbius founds an enterprise to construct and finally sell his Enigma machine for the German Military

late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly

1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts

1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939

1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of William Frederick Friedman. As the Japanese were unable to break the US codes, they imagined their own codes to be unbreakable as well - and were not careful enough.

1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett

- at the same time the British develop the Typex machine, similar to the German Enigma machine

1943 Colossus, a code breaking computer is put into action at Bletchley Park

1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type

1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems

1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ)

late 1960's the IBM Watson Research Lab develops the Lucifer cipher

1969 James Ellis develops a system of separate public-keys and private-keys

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438658921
 
Critical Art Ensemble

Critical Art Ensemble is a collective of five artists of various specializations dedicated to exploring the intersections between art, technology, radical politics, and critical theory. CAE have published a number of books and carried out innovative art projects containing insightful and ironic theoretical contributions to media art. Projects include Addictionmania, Useless Technology, The Therapeutic State, Diseases of Consciousness, Machineworld, As Above So Below, and Flesh Machine.

http://www.critical-art.net

INDEXCARD, 1/4
 
Ron Rivest

Ronald L. Rivest is Webster Professor of Electrical Engineering and Computer Science in MIT's EECS Department. He was one of three persons in a team to invent the RSA public-key cryptosystem. The co-authors were Adi Shamir and Leonard M. Adleman.

INDEXCARD, 2/4
 
DES

The U.S. Data Encryption Standard (= DES) is the most widely used encryption algorithm, especially used for protection of financial transactions. It was developed by IBM in 1971. It is a symmetric-key cryptosystem. The DES algorithm uses a 56-bit encryption key, meaning that there are 72,057,594,037,927,936 possible keys.

for more information see:
http://www.britannica.com/bcom/eb/article/3/0,5716,117763+5,00.html
http://www.cryptography.com/des/

http://www.britannica.com/bcom/eb/article/3/0...
http://www.cryptography.com/des/
INDEXCARD, 3/4
 
Clipper Chip

The Clipper Chip is a cryptographic device proposed by the U.S. government that purportedly intended to protect private communications while at the same time permitting government agents to obtain the "keys" upon presentation of what has been vaguely characterized as "legal authorization." The "keys" are held by two government "escrow agents" and would enable the government to access the encrypted private communication. While Clipper would be used to encrypt voice transmissions, a similar chip known as Capstone
would be used to encrypt data. The underlying cryptographic algorithm, known as Skipjack, was developed by the National Security Agency (NSA).

INDEXCARD, 4/4