|
Steganography Ciphers as well as codes are transmitted openly. Everyone can see that they exist. Not so with steganograms. Steganography is the art and science of communicating in a way which hides the existence of the secret part in that communication. During the Italian Renaissance and the time of the Elizabethan Age in England cryptography was very popular, for political reasons as well as for amusements (see John Dee). In literature steganography played an important role. Many steganographs of that period have only been deciphered recently like some of the Shakespearean sonnets, which now seem to proof that the actor William Shakespeare was not the author of the famous poems and dramas, but that the latter' name was, and Francis Bacon, or even Francis Tudor, as some ciphers and other sources talk of him as Queen Elisabeth I.'s secret son. for further details see: One kind of steganogram is digital watermarking: Watermarks protect digital images, videos, but also audio and multimedia products. They are made out of digital signals, put into other digital signals. They try to be invisible on first sight and should be nearly impossible to remove. The process of producing watermarks is to overlay some sort of identifying image over the original image (non-digital watermarks, like on money can be seen by holding the paper against light). Copying the image destroys the watermark, which cannot be copied. Any alteration of the original destroys the watermark, too. Watermarking is one of the typical inventions of cryptography to assist the biggest content owners, but advertised as something necessary and helpful for everybody. Who in fact gets any advantage out of watermarking? The private user most of the time will not really need it except for small entities of pictures maybe. But the big enterprises do. There is a tendency to watermark more and more information in the Internet, which until now was considered as free and as a cheap method to receive information. Watermarking could stop this democratic development. for further information see: |
|
|
|
Timeline 1970-2000 AD 1971 IBM's work on the Lucifer cipher and the work of the NSA lead to the U.S. Data Encryption Standard (= 1976 1977/78 the 1984 Congress passes Comprehensive Crime Control Act - The Hacker Quarterly is founded 1986 Computer Fraud and Abuse Act is passed in the USA - Electronic Communications Privacy Act 1987 Chicago prosecutors found Computer Fraud and Abuse Task Force 1988 U.S. Secret Service covertly videotapes a hacker convention 1989 NuPrometheus League distributes Apple Computer software 1990 - - Charles H. Bennett and Gilles Brassard publish their work on Quantum Cryptography - Martin Luther King Day Crash strikes AT&T long-distance network nationwide 1991 - one of the first conferences for Computers, Freedom and Privacy takes place in San Francisco - AT&T phone crash; New York City and various airports get affected 1993 the U.S. government announces to introduce the 1994 - the 1990s work on quantum computer and quantum cryptography - work on biometrics for authentication (finger prints, the iris, smells, etc.) 1996 France liberates its cryptography law: one now can use cryptography if registered - OECD issues Cryptography Policy Guidelines; a paper calling for encryption exports-standards and unrestricted access to encryption products 1997 April European Commission issues Electronic Commerce Initiative, in favor of strong encryption 1997 June PGP 5.0 Freeware widely available for non-commercial use 1997 June 56-bit DES code cracked by a network of 14,000 computers 1997 August U.S. judge assesses encryption export regulations as violation of the First Amendment 1998 February foundation of Americans for Computer Privacy, a broad coalition in opposition to the U.S. cryptography policy 1998 March 1998 April NSA issues a report about the risks of key recovery systems 1998 July 1998 October Finnish government agrees to unrestricted export of strong encryption 1999 January RSA Data Security, establishes worldwide distribution of encryption product outside the USA - National Institute of Standards and Technologies announces that 56-bit - 56-bit DES code is cracked in 22 hours and 15 minutes 1999 May 27 United Kingdom speaks out against key recovery 1999 Sept: the USA announce to stop the restriction of cryptography-exports 2000 as the German government wants to elaborate a cryptography-law, different organizations start a campaign against that law - computer hackers do no longer only visit websites and change little details there but cause breakdowns of entire systems, producing big economic losses for further information about the history of cryptography see: for information about hacker's history see: |
|
|
|
Clipper Chip The Clipper Chip is a cryptographic device proposed by the U.S. government that purportedly intended to protect private communications while at the same time permitting government agents to obtain the "keys" upon presentation of what has been vaguely characterized as "legal authorization." The "keys" are held by two government "escrow agents" and would enable the government to access the encrypted private communication. While Clipper would be used to encrypt voice transmissions, a similar chip known as Capstone would be used to encrypt data. The underlying cryptographic algorithm, known as Skipjack, was developed by the National Security Agency (NSA). |
|
|