More and more, faster and faster, but... Since the invention of appropriate means and technologies, communication no longer requires face-to-face meetings. From writing and reading to using computers, expanding and exhausting one's possibilities to communicate relies more and more on the application of skills we have to learn. With the increasing importance of communication technologies, learning to apply them properly becomes a kind of rite of passage. A Small World From the very beginning - the first Sumerian pictographs on clay tablets - to today's state of the art technologies - broadband communication via Since the invention of the electrical telegraph, but especially with today's growing digital communication networks, every location on earth seems to be close, however distant it may be, and also time no longer remains a significant dimension. Threatened Cultural Memory More and more information is transmitted and produced faster and faster, but the shelf life of information becomes more and more fragile. For more than 4500 years Sumerian pictographs written on clay tablets remained intact, but newspapers and books, printed some decades ago, crumble into pieces; film reels, video tapes and cassettes corrode. Digitalization of information is not a cure; on the contrary it even intensifies the danger of destroying cultural heritage. Data increasingly requires specific software and hardware, but to regularly convert all available digitized information is an unexecutable task. Compared to the longevity of pictographs on clay tablets, digitized information is produced for instant one-time use. The increasing production and processing of information causes a problem hitherto unknown: the loss of our cultural memory. For further information see For another history of communication systems see |
|
1000 B.C. - 0 900 B.C. A postal service is used for governmental purposes in China. 500 B.C. In ancient Greece trumpets, drums, shouting, beacon, fires, smoke signals, and mirrors are used for message transmission. 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of a message transmission while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by a torch signal that the appropriate water level had been reached. The methods disadvantage was that the possible messages were restricted to a given code, but as the system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand the messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, 3rd century B.C. Wax tablets are used as writing material in Mesopotamia, ancient Greece, and Etruria. 2nd century B.C. In China paper is invented. 1st century B.C. The use of codices instead of scrolls - basically the hardcover book as we know it today - is an essential event in European history. To quote accurately by page number, to browse through pages and to skip chapters - things that were impossible when reading scrolls - becomes possible. In the computer age we are witnesses to a kind of revival of the scrolls as we scroll up and down a document. The introduction of hypertext possibly marks the beginning of a similar change as has taken place with the substitution of scrolls with codices. |
|
Timeline 1970-2000 AD 1971 IBM's work on the Lucifer cipher and the work of the NSA lead to the U.S. Data Encryption Standard (= 1976 1977/78 the 1984 Congress passes Comprehensive Crime Control Act - The Hacker Quarterly is founded 1986 Computer Fraud and Abuse Act is passed in the USA - Electronic Communications Privacy Act 1987 Chicago prosecutors found Computer Fraud and Abuse Task Force 1988 U.S. Secret Service covertly videotapes a hacker convention 1989 NuPrometheus League distributes Apple Computer software 1990 - - Charles H. Bennett and Gilles Brassard publish their work on Quantum Cryptography - Martin Luther King Day Crash strikes AT&T long-distance network nationwide 1991 - one of the first conferences for Computers, Freedom and Privacy takes place in San Francisco - AT&T phone crash; New York City and various airports get affected 1993 the U.S. government announces to introduce the 1994 - the 1990s work on quantum computer and quantum cryptography - work on biometrics for authentication (finger prints, the iris, smells, etc.) 1996 France liberates its cryptography law: one now can use cryptography if registered - OECD issues Cryptography Policy Guidelines; a paper calling for encryption exports-standards and unrestricted access to encryption products 1997 April European Commission issues Electronic Commerce Initiative, in favor of strong encryption 1997 June PGP 5.0 Freeware widely available for non-commercial use 1997 June 56-bit DES code cracked by a network of 14,000 computers 1997 August U.S. judge assesses encryption export regulations as violation of the First Amendment 1998 February foundation of Americans for Computer Privacy, a broad coalition in opposition to the U.S. cryptography policy 1998 March 1998 April NSA issues a report about the risks of key recovery systems 1998 July 1998 October Finnish government agrees to unrestricted export of strong encryption 1999 January RSA Data Security, establishes worldwide distribution of encryption product outside the USA - National Institute of Standards and Technologies announces that 56-bit - 56-bit DES code is cracked in 22 hours and 15 minutes 1999 May 27 United Kingdom speaks out against key recovery 1999 Sept: the USA announce to stop the restriction of cryptography-exports 2000 as the German government wants to elaborate a cryptography-law, different organizations start a campaign against that law - computer hackers do no longer only visit websites and change little details there but cause breakdowns of entire systems, producing big economic losses for further information about the history of cryptography see: for information about hacker's history see: |
|
Fiber-optic cable networks Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Copper wires will not come out of use in the foreseeable future because of technologies as For technical information from the Encyclopaedia Britannica on telecommunication cables, click An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the For maps of fiber-optic cable networks see the website of |
|
Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks This book gives a fascinating glimpse of the many documented attempts throughout history to develop effective means for long distance communications. Large-scale communication networks are not a twentieth-century phenomenon. The oldest attempts date back to millennia before Christ and include ingenious uses of homing pigeons, mirrors, flags, torches, and beacons. The first true nationwide data networks, however, were being built almost two hundred years ago. At the turn of the 18th century, well before the electromagnetic telegraph was invented, many countries in Europe already had fully operational data communications systems with altogether close to one thousand network stations. The book shows how the so-called information revolution started in 1794, with the design and construction of the first true telegraph network in France, Chappe's fixed optical network. http://www.it.kth.se/docs/early_net/ |
|