Challenges for Copyright by ICT: Digital Content Providers

Providers of digital information might be confronted with copyright related problems when using some of the special features of hypertext media like frames and hyperlinks (which both use third party content available on the Internet to enhance a webpage or CD ROM), or operate a search engine or online directory on their website.

Framing

Frames are often used to help define, and navigate within, a content provider's website. Still, when they are used to present (copyrighted) third party material from other sites issues of passing off and misleading or deceptive conduct, as well as copyright infringement, immediately arise.

Hyperlinking

It is generally held that the mere creation of a hyperlink does not, of itself, infringe copyright as usually the words indicating a link or the displayed URL are unlikely to be considered a "work". Nevertheless if a link is clicked on the users browser will download a full copy of the material at the linked address creating a copy in the RAM of his computer courtesy of the address supplied by the party that published the link. Although it is widely agreed that the permission to download material over the link must be part of an implied license granted by the person who has made the material available on the web in the first place, the scope of this implied license is still the subject of debate. Another option that has been discussed is to consider linking fair use.

Furthermore hyperlinks, and other "information location tools", like online directories or search engines could cause their operators trouble if they refer or link users to a site that contains infringing material. In this case it is yet unclear whether providers can be held liable for infringement.

TEXTBLOCK 1/12 // URL: http://world-information.org/wio/infostructure/100437611725/100438659590
 
Other biometric technologies

Other biometric technologies not specified here include ear recognition, signature dynamics, key stroke dynamics, vein pattern recognition, retinal scan, body odour recognition, and DNA recognition. These are technologies which are either in early stages of development or used in highly specialised and limited contexts.

TEXTBLOCK 2/12 // URL: http://world-information.org/wio/infostructure/100437611729/100438658399
 
Challenges for Copyright by ICT: Internet Service Providers

ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning caching, information residing on systems or networks of ISPs at the directions of users and transitory communication.

Caching

Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated.

Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts).

Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the DMCA or the proposed EU Directive on copyright and related rights in the information society (amended version) have provided exceptions for ISPs concerning particular acts of reproduction that are considered technical copies (caching). Nevertheless the exemption of liability for ISPs only applies if they meet a variety of specific conditions. In the course of the debate about caching also suggestions have been made to subject it to an implied license or fair use defense or make it (at least theoretically) actionable.

Information Residing on Systems or Networks at the Direction of Users

ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances.

Transitory Communication

In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions.

For more information on copyright (intellectual property) related problems of ISPs (BBSs (Bulletin Board Service Operators), systems operators and other service providers) see:

Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Intellectual Property and Technology Forum. June 4, 1999.

Teran, G.: Who is Vulnerable to Suit? ISP Liability for Copyright Infringement. November 2, 1999.

TEXTBLOCK 3/12 // URL: http://world-information.org/wio/infostructure/100437611725/100438659550
 
Basics: Introduction

Copyright law is a branch of intellectual property law and deals with the rights of intellectual creators in their works. The scope of copyright protection as laid down in Article 2 of the 1996 WIPO Copyright Treaty "... extends to expressions and not to ideas, procedures, methods of operation or mathematical concepts as such." Copyright law protects the creativity concerning the choice and arrangement of words, colors, musical notes etc. It grants the creators of certain specified works exclusive rights relating to the "copying" and use of their original creation.


TEXTBLOCK 4/12 // URL: http://world-information.org/wio/infostructure/100437611725/100438659520
 
Intellectual Property: A Definition

Intellectual property, very generally, relates to the output, which result from intellectual activity in the industrial, scientific, literary and artistic fields. Traditionally intellectual property is divided into two branches:

1) Industrial Property

a) Inventions
b) Marks (trademarks and service marks)
c) Industrial designs
d) Unfair competition (trade secrets)
e) Geographical indications (indications of source and appellations of origin)

2) Copyright

The protection of intellectual property is guaranteed through a variety of laws, which grant the creators of intellectual goods, and services certain time-limited rights to control the use made of their products. Those rights apply to the intellectual creation as such, and not to the physical object in which the work may be embodied.

TEXTBLOCK 5/12 // URL: http://world-information.org/wio/infostructure/100437611725/100438659434
 
Virtual body and data body



The result of this informatisation is the creation of a virtual body which is the exterior of a man or woman's social existence. It plays the same role that the physical body, except located in virtual space (it has no real location). The virtual body holds a certain emancipatory potential. It allows us to go to places and to do things which in the physical world would be impossible. It does not have the weight of the physical body, and is less conditioned by physical laws. It therefore allows one to create an identity of one's own, with much less restrictions than would apply in the physical world.

But this new freedom has a price. In the shadow of virtualisation, the data body has emerged. The data body is a virtual body which is composed of the files connected to an individual. As the Critical Art Ensemble observe in their book Flesh Machine, the data body is the "fascist sibling" of the virtual body; it is " a much more highly developed virtual form, and one that exists in complete service to the corporate and police state."

The virtual character of the data body means that social regulation that applies to the real body is absent. While there are limits to the manipulation and exploitation of the real body (even if these limits are not respected everywhere), there is little regulation concerning the manipulation and exploitation of the data body, although the manipulation of the data body is much easier to perform than that of the real body. The seizure of the data body from outside the concerned individual is often undetected as it has become part of the basic structure of an informatised society. But data bodies serve as raw material for the "New Economy". Both business and governments claim access to data bodies. Power can be exercised, and democratic decision-taking procedures bypassed by seizing data bodies. This totalitarian potential of the data body makes the data body a deeply problematic phenomenon that calls for an understanding of data as social construction rather than as something representative of an objective reality. How data bodies are generated, what happens to them and who has control over them is therefore a highly relevant political question.

TEXTBLOCK 6/12 // URL: http://world-information.org/wio/infostructure/100437611761/100438659695
 
Feeding the data body

TEXTBLOCK 7/12 // URL: http://world-information.org/wio/infostructure/100437611761/100438659644
 
Timeline Cryptography - Introduction

Besides oral conversations and written language many other ways of information-transport are known: like the bush telegraph, drums, smoke signals etc. Those methods are not cryptography, still they need en- and decoding, which means that the history of language, the history of communication and the history of cryptography are closely connected to each other
The timeline gives an insight into the endless fight between enciphering and deciphering. The reasons for them can be found in public and private issues at the same time, though mostly connected to military maneuvers and/or political tasks.

One of the most important researchers on Cryptography through the centuries is David Kahn; many parts of the following timeline are originating from his work.

TEXTBLOCK 8/12 // URL: http://world-information.org/wio/infostructure/100437611776/100438658824
 
Online data capturing

Hardly a firm today can afford not to engage in electronic commerce if it does not want to be swept out of business by competitors. "Information is everything" has become something like the Lord's prayer of the New Economy. But how do you get information about your customer online? Who are the people who visit a website, where do they come from, what are they looking for? How much money do they have, what might they want to buy? These are key questions for a company doing electronic business. Obviously not all of this information can be obtained by monitoring the online behaviour of web users, but there are always little gimmicks that, when combined with common tracking technologies, can help to get more detailed information about a potential customer. These are usually online registration forms, either required for entry to a site, or competitions, sometimes a combination of the two. Obviously, if you want to win that weekend trip to New York, you want to provide your contact details.

The most common way of obtaining information about a user online is a cookie. However, a cookie by itself is not sufficient to identify a user personally. It merely identifies the computer to the server by providing its IP number. Only combined with other data extraction techniques, such as online registration, can a user be identified personally ("Register now to get the full benefit of xy.com. It's free!")

But cookies record enough information to fine-tune advertising strategies according to a user's preferences and interests, e.g. by displaying certain commercial banners rather than others. For example, if a user is found to respond to a banner of a particular kind, he / she may find two of them at the next visit. Customizing the offers on a website to the particular user is part of one-to-one marketing, a type of direct marketing. But one-to-one marketing can go further than this. It can also offer different prices to different users. This was done by Amazon.com in September 2000, when fist-time visitors were offered cheaper prices than regular customers.

One-to-one marketing can create very different realities that undermine traditional concepts of demand and supply. The ideal is a "frictionless market", where the differential between demand and supply is progressively eliminated. If a market is considered a structure within which demand / supply differentials are negotiated, this amounts to the abolition of the established notion of the nature of a market. Demand and supply converge, desire and it fulfilment coincide. In the end, there is profit without labour. However, such a structure is a hermetic structure of unfreedom.

It can only function when payment is substituted by credit, and the exploitation of work power by the exploitation of data. In fact, in modern economies there is great pressure to increase spending on credit. Using credit cards and taking up loans generates a lot of data around a person's economic behaviour, while at the same restricting the scope of social activity and increasing dependence. On the global level, the consequences of credit spirals can be observed in many of the developing countries that have had to abandon most of their political autonomy. As the data body economy advances, this is also the fate of people in western societies when they are structurally driven into credit spending. It shows that data bodies are not politically neutral.

The interrelation between data, profit and unfreedom is frequently overlooked by citizens and customers. Any company in a modern economy will apply data collecting strategies for profit, with dependence and unfreedom as a "secondary effect". The hunger for data has made IT companies eager to profit from e-business rather resourceful. "Getting to know the customer" - this is a catchphrase that is heard frequently, and which suggests that there are no limits to what a company may want to about a customer. In large online shops, such as amazon.com, where customer's identity is accurately established by the practice of paying with credit cards, an all business happens online, making it easy for the company to accurately profile the customers.

But there are more advanced and effective ways of identification. The German company Sevenval has developed a new way of customer tracking which works with "virtual domains". Every visitor of a website is assigned an 33-digit identification number which the browser understands as part of the www address, which will then read something like http://XCF49BEB7E97C00A328BF562BAAC75FB2.sevenval.com. Therefore, this tracking method, which is advertised by Sevenval as a revolutionary method capable of tracking the exact and complete path of a user on a website, can not be simple switched off. In addition, the method makes it possible for the identity of a user can travel with him when he / she visits one of the other companies linked to the site in question. As in the case of cookies, this tracking method by itself is not sufficient to identify a user personally. Such an identification only occurs once a customer pays with a credit card, or decides to participate in a draw, or voluntarily completes a registration form.

Bu there are much less friendly ways of extracting data from a user and feeding the data body. Less friendly means: these methods monitor users in situations where the latter are likely not to want to be monitored. Monitoring therefore takes place in a concealed manner. One of these monitoring methods are so-called web bugs. These are tiny graphics, not more than 1 x 1 pixel in size, and therefore invisible on a screen, capable of monitoring an unsuspecting user's e-mails or movements on a website. Leading corporations such as Barnes and Noble, eToys, Cooking.com, and Microsoft have all used web bugs in advertising campaigns. Richard Smith has compiled a web bugs FAQ site that contains detailed information and examples of web bugs in use.

Bugs monitoring users have also been packaged in seemingly harmless toys made available on the Internet. For example, Comet Systems offers cursor images which have been shown to collect user data and send them back to the company's server. These little images replace the customary white arrow of a mouse with a little image of a baseball, a cat, an UFO, etc. large enough to carry a bug collecting user information. The technology is offered as a marketing tool to companies looking for a "fun, new way to interact with their audience".

The cursor image technology relies on what is called a GUID (global unique identifier). This is an identification number which is assigned to a customer at the time of registration, or when downloading a product. Many among the online community were alarmed when in 1999 it was discovered that Microsoft assigned GUIDS without their customer's knowledge. Following protests, the company was forced to change the registration procedure, assuring that under no circumstances would these identification numbers be used for tracking or marketing.

However, in the meantime, another possible infringement on user anonymity by Microsoft was discovered, when it as found out that MS Office documents, such as Word, Excel or Powerpoint, contain a bug that is capable of tracking the documents as they are sent through the net. The bug sends information about the user who opens the document back to the originating server. A document that contains the bug can be tracked across the globe, through thousands of stopovers. In detailed description of the bug and how it works can be found at the Privacy Foundation's website. Also, there is an example of such a bug at the Privacy Center of the University of Denver.

Of course there are many other ways of collecting users' data and creating appropriating data bodies which can then be used for economic purposes. Indeed, as Bill Gates commented, "information is the lifeblood of business". The electronic information networks are becoming the new frontier of capitalism.

TEXTBLOCK 9/12 // URL: http://world-information.org/wio/infostructure/100437611761/100438659686
 
Legal Protection: WIPO (World Intellectual Property Organization)

Presumably the major player in the field of international intellectual property protection and administrator of various multilateral treaties dealing with the legal and administrative aspects of intellectual property is the WIPO.

Information on WIPO administered agreements in the field of industrial property (Paris Convention for the Protection of Industrial Property (1883), Madrid Agreement Concerning the International Registration of Marks (1891) etc.) can be found on: http://www.wipo.org/eng/general/index3.htm

Information on treaties concerning copyright and neighboring rights (Berne Convention for the Protection of Literary and Artistic Works (1886) etc.) is published on: http://www.wipo.org/eng/general/index5.htm

The most recent multilateral agreement on copyright is the 1996 WIPO Copyright Treaty. Among other things it provides that computer programs are protected as literary works and also introduces the protection of databases, which "... by reason of the selection or arrangement of their content constitute intellectual creations." Furthermore the 1996 WIPO Copyright Treaty contains provisions concerning technological measures, rights management information and establishes a new "right of communication to the public". It is available on: http://www.wipo.org/eng/diplconf/distrib/treaty01.htm

TEXTBLOCK 10/12 // URL: http://world-information.org/wio/infostructure/100437611725/100438659588
 
In Search of Reliable Internet Measurement Data

Newspapers and magazines frequently report growth rates of Internet usage, number of users, hosts, and domains that seem to be beyond all expectations. Growth rates are expected to accelerate exponentially. However, Internet measurement data are anything thant reliable and often quite fantastic constructs, that are nevertheless jumped upon by many media and decision makers because the technical difficulties in measuring Internet growth or usage are make reliable measurement techniques impossible.

Equally, predictions that the Internet is about to collapse lack any foundation whatsoever. The researchers at the Internet Performance Measurement and Analysis Project (IPMA) compiled a list of news items about Internet performance and statistics and a few responses to them by engineers.

Size and Growth

In fact, "today's Internet industry lacks any ability to evaluate trends, identity performance problems beyond the boundary of a single ISP (Internet service provider, M. S.), or prepare systematically for the growing expectations of its users. Historic or current data about traffic on the Internet infrastructure, maps depicting ... there is plenty of measurement occurring, albeit of questionable quality", says K. C. Claffy in his paper Internet measurement and data analysis: topology, workload, performance and routing statistics (http://www.caida.org/Papers/Nae/, Dec 6, 1999). Claffy is not an average researcher; he founded the well-known Cooperative Association for Internet Data Analysis (CAIDA).

So his statement is a slap in the face of all market researchers stating otherwise.
In a certain sense this is ridiculous, because since the inception of the ARPANet, the offspring of the Internet, network measurement was an important task. The very first ARPANet site was established at the University of California, Los Angeles, and intended to be the measurement site. There, Leonard Kleinrock further on worked on the development of measurement techniques used to monitor the performance of the ARPANet (cf. Michael and Ronda Hauben, Netizens: On the History and Impact of the Net). And in October 1991, in the name of the Internet Activities Board Vinton Cerf proposed guidelines for researchers considering measurement experiments on the Internet stated that the measurement of the Internet. This was due to two reasons. First, measurement would be critical for future development, evolution and deployment planning. Second, Internet-wide activities have the potential to interfere with normal operation and must be planned with care and made widely known beforehand.
So what are the reasons for this inability to evaluate trends, identity performance problems beyond the boundary of a single ISP? First, in early 1995, almost simultaneously with the worldwide introduction of the World Wide Web, the transition of the stewardship role of the National Science Foundation over the Internet into a competitive industry (bluntly spoken: its privatization) left no framework for adequate tracking and monitoring of the Internet. The early ISPs were not very interested in gathering and analyzing network performance data, they were struggling to meet demands of their rapidly increasing customers. Secondly, we are just beginning to develop reliable tools for quality measurement and analysis of bandwidth or performance. CAIDA aims at developing such tools.
"There are many estimates of the size and growth rate of the Internet that are either implausible, or inconsistent, or even clearly wrong", K. G. Coffman and Andrew, both members of different departments of AT & T Labs-Research, state something similar in their paper The Size and Growth Rate of the Internet, published in First Monday. There are some sources containing seemingly contradictory information on the size and growth rate of the Internet, but "there is no comprehensive source for information". They take a well-informed and refreshing look at efforts undertaken for measuring the Internet and dismantle several misunderstandings leading to incorrect measurements and estimations. Some measurements have such large error margins that you might better call them estimations, to say the least. This is partly due to the fact that data are not disclosed by every carrier and only fragmentarily available.
What is measured and what methods are used? Many studies are devoted to the number of users; others look at the number of computers connected to the Internet or count IP addresses. Coffman and Odlyzko focus on the sizes of networks and the traffic they carry to answer questions about the size and the growth of the Internet.
You get the clue of their focus when you bear in mind that the Internet is just one of many networks of networks; it is only a part of the universe of computer networks. Additionally, the Internet has public (unrestricted) and private (restricted) areas. Most studies consider only the public Internet, Coffman and Odlyzko consider the long-distance private line networks too: the corporate networks, the Intranets, because they are convinced (that means their assertion is put forward, but not accompanied by empirical data) that "the evolution of the Internet in the next few years is likely to be determined by those private networks, especially by the rate at which they are replaced by VPNs (Virtual Private Networks) running over the public Internet. Thus it is important to understand how large they are and how they behave." Coffman and Odlyzko check other estimates by considering the traffic generated by residential users accessing the Internet with a modem, traffic through public peering points (statistics for them are available through CAIDA and the National Laboratory for Applied Network Research), and calculating the bandwidth capacity for each of the major US providers of backbone services. They compare the public Internet to private line networks and offer interesting findings. The public Internet is currently far smaller, in both capacity and traffic, than the switched voice network (with an effective bandwidth of 75 Gbps at December 1997), but the private line networks are considerably larger in aggregate capacity than the Internet: about as large as the voice network in the U. S. (with an effective bandwidth of about 330 Gbps at December 1997), they carry less traffic. On the other hand, the growth rate of traffic on the public Internet, while lower than is often cited, is still about 100% per year, much higher than for traffic on other networks. Hence, if present growth trends continue, data traffic in the U. S. will overtake voice traffic around the year 2002 and will be dominated by the Internet. In the future, growth in Internet traffic will predominantly derive from people staying longer and from multimedia applications, because they consume more bandwidth, both are the reason for unanticipated amounts of data traffic.

Hosts

The Internet Software Consortium's Internet Domain Survey is one of the most known efforts to count the number of hosts on the Internet. Happily the ISC informs us extensively about the methods used for measurements, a policy quite rare on the Web. For the most recent survey the number of IP addresses that have been assigned a name were counted. At first sight it looks simple to get the accurate number of hosts, but practically an assigned IP address does not automatically correspond an existing host. In order to find out, you have to send a kind of message to the host in question and wait for a reply. You do this with the PING utility. (For further explanations look here: Art. PING, in: Connected: An Internet Encyclopaedia) But to do this for every registered IP address is an arduous task, so ISC just pings a 1% sample of all hosts found and make a projection to all pingable hosts. That is ISC's new method; its old method, still used by RIPE, has been to count the number of domain names that had IP addresses assigned to them, a method that proved to be not very useful because a significant number of hosts restricts download access to their domain data.
Despite the small sample, this method has at least one flaw: ISC's researchers just take network numbers into account that have been entered into the tables of the IN-ADDR.ARPA domain, and it is possible that not all providers know of these tables. A similar method is used for Telcordia's Netsizer.

Internet Weather

Like daily weather, traffic on the Internet, the conditions for data flows, are monitored too, hence called Internet weather. One of the most famous Internet weather report is from The Matrix, Inc. Another one is the Internet Traffic Report displaying traffic in values between 0 and 100 (high values indicate fast and reliable connections). For weather monitoring response ratings from servers all over the world are used. The method used is to "ping" servers (as for host counts, e. g.) and to compare response times to past ones and to response times of servers in the same reach.

Hits, Page Views, Visits, and Users

Let us take a look at how these hot lists of most visited Web sites may be compiled. I say, may be, because the methods used for data retrieval are mostly not fully disclosed.
For some years it was seemingly common sense to report requested files from a Web site, so called "hits". A method not very useful, because a document can consist of several files: graphics, text, etc. Just compile a document from some text and some twenty flashy graphical files, put it on the Web and you get twenty-one hits per visit; the more graphics you add, the more hits and traffic (not automatically to your Web site) you generate.
In the meantime page views, also called page impressions are preferred, which are said to avoid these flaws. But even page views are not reliable. Users might share computers and corresponding IP addresses and host names with others, she/he might access not the site, but a cached copy from the Web browser or from the ISP's proxy server. So the server might receive just one page request although several users viewed a document.

Especially the editors of some electronic journals (e-journals) rely on page views as a kind of ratings or circulation measure, Rick Marin reports in the New York Times. Click-through rates - a quantitative measure - are used as a substitute for something of intrinsically qualitative nature: the importance of a column to its readers, e. g. They may read a journal just for a special column and not mind about the journal's other contents. Deleting this column because of not receiving enough visits may cause these readers to turn their backs on their journal.
More advanced, but just slightly better at best, is counting visits, the access of several pages of a Web site during one session. The problems already mentioned apply here too. To avoid them, newspapers, e.g., establish registration services, which require password authentication and therefore prove to be a kind of access obstacle.
But there is a different reason for these services. For content providers users are virtual users, not unique persons, because, as already mentioned, computers and IP addresses can be shared and the Internet is a client-server system; in a certain sense, in fact computers communicate with each other. Therefore many content providers are eager to get to know more about users accessing their sites. On-line registration forms or WWW user surveys are obvious methods of collecting additional data, sure. But you cannot be sure that information given by users is reliable, you can just rely on the fact that somebody visited your Web site. Despite these obstacles, companies increasingly use data capturing. As with registration services cookies come here into play.

For

If you like to play around with Internet statistics instead, you can use Robert Orenstein's Web Statistics Generator to make irresponsible predictions or visit the Internet Index, an occasional collection of seemingly statistical facts about the Internet.

Measuring the Density of IP Addresses

Measuring the Density of IP Addresses or domain names makes the geography of the Internet visible. So where on earth is the most density of IP addresses or domain names? There is no global study about the Internet's geographical patterns available yet, but some regional studies can be found. The Urban Research Initiative and Martin Dodge and Narushige Shiode from the Centre for Advanced Spatial Analysis at the University College London have mapped the Internet address space of New York, Los Angeles and the United Kingdom (http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/telecom.html and http://www.geog.ucl.ac.uk/casa/martin/internetspace/paper/gisruk98.html).
Dodge and Shiode used data on the ownership of IP addresses from RIPE, Europe's most important registry for Internet numbers.





TEXTBLOCK 11/12 // URL: http://world-information.org/wio/infostructure/100437611791/100438658352
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 12/12 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
Backbone Networks

Backbone networks are central networks usually of very high bandwidth, that is, of very high transmitting capacity, connecting regional networks. The first backbone network was the NSFNet run by the National Science Federation of the United States.

INDEXCARD, 1/21
 
Europe Online

Established in 1998 and privately held, Europe Online created and operates the world's largest broadband "Internet via the Sky" network. The Europe Online "Internet via the Sky" service is available to subscribers in English, French, German, Dutch and Danish with more languages to come.

http://www.europeonline.com

INDEXCARD, 2/21
 
Transmission Control Protocol/Internet Protocol (TCP/IP)

TCP and IP are the two most important protocols and communication standards. TCP provides reliable message-transmission service; IP is the key protocol for specifying how packets are routed around the Internet.

More detailed information can be found here

http://www.anu.edu/people/Roger.Clarke/II/Pri...
INDEXCARD, 3/21
 
Next Generation Internet Program

A research and development program funded by the US government. Goal is the development of advanced networking technologies and applications requiring advanced networking with capabilities that are 100 to 1,000 times faster end-to-end than today's Internet.

http://www.ngi.gov

INDEXCARD, 4/21
 
Proprietary Network

Proprietary networks are computer networks with standards different to the ones proposed by the International Standardization Organization (ISO), the Open Systems Interconnection (OSI). Designed to conform to standards implemented by the manufacturer, compatibility to other network standards is not assured.

INDEXCARD, 5/21
 
Extranet

An Extranet is an Intranet with limited and controlled access by authenticated outside users, a business-to-business Intranet, e.g.

INDEXCARD, 6/21
 
RSA

The best known of the two-key cryptosystems developed in the mid-1980s is the Rivest-Shamir-Adleman (RSA) cryptoalgorithm, which was first published in April, 1977. Since that time, the algorithm has been employed in the most widely-used Internet electronic communications encryption program, Pretty Good Privacy (PGP). It is also employed in both the Netscape Navigator and Microsoft Explorer web browsing programs in their implementations of the Secure Sockets Layer (SSL), and by Mastercard and VISA in the Secure Electronic Transactions (SET) protocol for credit card transactions.

INDEXCARD, 7/21
 
National Science Foundation (NSF)

Established in 1950, the National Science Foundation is an independent agency of the U.S. government dedicated to the funding in basic research and education in a wide range of sciences and in mathematics and engineering. Today, the NSF supplies about one quarter of total federal support of basic scientific research at academic institutions.

http://www.nsf.gov

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/0/0,5716,2450+1+2440,00.html

http://www.nsf.gov/
INDEXCARD, 8/21
 
Society for Worldwide Interbank Financial Telecommunication (SWIFT)

Founded in 1973 by 239 banks from 15 countries, SWIFT is responsible for maintaining the world's most important network dedicated to financial transaction processing.
Although facing competition from smart cards, e.g., SWIFT can rely on an increasing clientèle. In September 1999 SWIFT served 6,710 live users in 189 countries.

http://www.swift.com

http://www.swift.com/
INDEXCARD, 9/21
 
User tracking

User tracking is a generic term that covers all the techniques of monitoring the movements of a user on a web site. User tracking has become an essential component in online commerce, where no personal contact to customers is established, leaving companies with the predicament of not knowing who they are talking to. Some companies, such as Red Eye, Cyber Dialogue, and SAS offer complete technology packages for user tracking and data analysis to online businesses. Technologies include software solutions such as e-mine, e-discovery, or WebHound

Whenever user tracking is performed without the explicit agreement of the user, or without laying open which data are collected and what is done with them, considerable privacy concerns have been raised.

http://www.redeye.co.uk/
http://www.cyberdialogue.com/
http://www.sas.com/
http://www.spss.com/emine/
http://www.sas.com/solutions/e-discovery/inde...
http://www.sas.com/products/webhound/index.ht...
http://www.linuxcare.com.au/mbp/meantime/
INDEXCARD, 10/21
 
William Gibson

American science fiction author. Most famous novel: Neuromancer.

For resources as writings and interviews available on the Internet see http://www.lib.loyno.edu/bibl/wgibson.htm

INDEXCARD, 11/21
 
First Monday

An English language peer reviewed media studies journal based in Denmark.

http://firstmonday.dk

INDEXCARD, 12/21
 
skytale

The skytale (pronunciation: ski-ta-le) was a Spartan tool for encryption. It consisted of a piece of wood and a leather-strip. Any communicating party needed exactly the same size wooden stick. The secret message was written on the leather-strip that was wound around the wood, unwound again and sent to the recipient by a messenger. The recipient would rewound the leather and by doing this enciphering the message.

INDEXCARD, 13/21
 
Cookie

A cookie is an information package assigned to a client program (mostly a Web browser) by a server. The cookie is saved on your hard disk and is sent back each time this server is accessed. The cookie can contain various information: preferences for site access, identifying authorized users, or tracking visits.

In online advertising, cookies serve the purpose of changing advertising banners between visits, or identifying a particular direct marketing strategy based on a user's preferences and responses.

Advertising banners can be permanently eliminated from the screen by filtering software as offered by Naviscope or Webwash

Cookies are usually stored in a separate file of the browser, and can be erased or permanently deactivated, although many web sites require cookies to be active.

http://www.naviscope.com/
http://www.webwash.com/
INDEXCARD, 14/21
 
Electronic Messaging (E-Mail)

Electronic messages are transmitted and received by computers through a network. By E-Mail texts, images, sounds and videos can be sent to single users or simultaneously to a group of users. Now texts can be sent and read without having them printed.

E-Mail is one of the most popular and important services on the Internet.

INDEXCARD, 15/21
 
Liability of ISPs

ISPs (Internet Service Provider), BBSs (Bulletin Board Service Operators), systems operators and other service providers (in the U.S.) can usually be hold liable for infringing activities that take place through their facilities under three theories: 1) direct liability: to establish direct infringement liability there must be some kind of a direct volitional act, 2) contributory liability: a party may be liable for contributory infringement where "... with knowledge of the infringing activity, [it] induces, causes or materially contributes to the infringing activity of another." Therefore a person must know or have reason to know that the subject matter is copyrighted and that particular uses violated copyright law. There must be a direct infringement of which the contributory infringer has knowledge, and encourages or facilitates for contributory infringement to attach, and 3) vicarious liability: a party may be vicariously liable for the infringing acts of another if it a) has the right and ability to control the infringer's acts and b) receives a direct financial benefit from the infringement. Unlike contributory infringement, knowledge is not an element of vicarious liability.


INDEXCARD, 16/21
 
Adolf Hitler

Adolf Hitler (1889-1945) was the head of the NSdAP, the National Socialist Workers' Party. Originally coming from Austria, he started his political career in Germany. As the Reichskanzler of Germany he provoked World War II. His hatred against all non-Aryans and people thinking in a different way killed millions of human beings. Disinformation about his personality and an unbelievable machinery of propaganda made an entire people close its eyes to the most cruel crimes on human kind.

INDEXCARD, 17/21
 
Clipper Chip

The Clipper Chip is a cryptographic device proposed by the U.S. government that purportedly intended to protect private communications while at the same time permitting government agents to obtain the "keys" upon presentation of what has been vaguely characterized as "legal authorization." The "keys" are held by two government "escrow agents" and would enable the government to access the encrypted private communication. While Clipper would be used to encrypt voice transmissions, a similar chip known as Capstone
would be used to encrypt data. The underlying cryptographic algorithm, known as Skipjack, was developed by the National Security Agency (NSA).

INDEXCARD, 18/21
 
Adi Shamir

Adi Shamir was one of three persons in a team to invent the RSA public-key cryptosystem. The other two authors were Ron Rivest and Leonard M. Adleman.

INDEXCARD, 19/21
 
Local Area Network (LAN)

A Local Area Network is an office network, a network restricted to a building area.

INDEXCARD, 20/21
 
Internet Exchanges

Internet exchanges are intersecting points between major networks.

List of the World's Public Internet exchanges (http://www.ep.net)

http://www.ep.net/
INDEXCARD, 21/21