ECHELON Main Stations

Location

Country

Target/Task

Relations

MORWENSTOW

UK

INTELSAT, Atlantic, Europe, Indian Ocean

NSA, GCHQ

SUGAR GROVE

USA

INTELSAT, Atlantic, North and South America

NSA

YAKIMA FIRING CENTER

USA

INTELSAT, Pacific

NSA

WAIHOPAI

NEW ZEALAND

INTELSAT, Pacific

NSA, GCSB

GERALDTON

AUSTRALIA

INTELSAT, Pacific

NSA, DSD

















MENWITH HILL

UK

Sat, Groundstation, Microwave(land based)

NSA, GCHQ

SHOAL BAY

AUSTRALIA

Indonesian Sat

NSA, DSD

LEITRIM

CANADA

Latin American Sat

NSA, CSE

BAD AIBLING

GERMANY

Sat, Groundstation

NSA

MISAWA

JAPAN

Sat

NSA

















PINE GAP

AUSTRALIA

Groundstation

CIA

















FORT MEADE

USA

Dictionary Processing

NSA Headquarters

WASHINGTON

USA

Dictionary Processing

NSA

OTTAWA

CANADA

Dictionary Processing

CSE

CHELTENHAM

UK

Dictionary Processing

GCHQ

CANBERRA

AUSTRALIA

Dictionary Processing

DSD

WELLINGTON

NEW ZEALAND

Dictionary Processing

GCSB Headquarters



TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611746/100438659207
 
Governmental Regulations

The new U.S. regulations are based on the Wassenaar Arrangement Revision of 1998, where exports without license of 56 bit DES and similar products are allowed after a technical review, just like encryption commodities and software with key lengths of 64-bits or less which meet the mass market requirements.
For more information see:
http://www.wassenaar.org/

Seven states stay excluded from the new freedom. These are states like Libya, Iraq, Iran, North Korea and Cuba, altogether states seen as terrorist supporting. No encryption tools may be exported into those countries.

This is, what happened in the USA, whereas in Germany the issue of a cryptography-law is still on the agenda. Until now, in Germany, everyone can decide by her-/himself, whether she/he wants to encrypt electronic messages or not. Some organizations fear that this could get changed soon. Therefore an urgent action was organized in February 2000 to demonstrate the government that people want the freedom to decide on their own. One governmental argument is that only very few people actually use cryptography. Therefore the urgent action is organized as a campaign for using it more frequently.

For more information on this see:
http://www.heise.de/ct/97/04/032/
http://www.fitug.de/ulf/krypto/verbot.html#welt

Other European countries have more liberate laws on cryptography, like France. Austria doesn't have any restrictions at all, probably because of a governmental lack of interest more than accepting freedom.
The (former) restrictions in the bigger countries influenced and hindered developments for safer key-systems, e.g. the key-length was held down extraordinarily.

"Due to the suspicious nature of crypto users I have a feeling DES will be with us forever, we will just keep adding keys and cycles (...). There is a parallel between designing electronic commerce infrastructure today that uses weak cryptography (i.e. 40 or 56 bit keys) and, say, designing air traffic control systems in the '60s using two digit year fields. (...) Just because you can retire before it all blows up doesn't make it any less irresponsible."
(Arnold G. Reinhold)


The Chinese State Encryption Management Commission (SEMC) announced in March 2000 that only strong encryption tools will have to be registered in the future. Which sounds so nice on first sight, does not mean a lot in reality: any kind of useful encryption technique, like the PGP, stay under governmental control.

The restrictions and prohibitions for cryptography are part of the states' wish to acquire more control - in the name of the battle against criminality, probably?
Due to the emerging organized criminality the governments want to obtain more freedom of control over citizens. Organizations like the NSA appear as the leaders of such demands.
What about civil rights or Human Rights?

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611776/100438659135
 
On-line Advertising and the Internet Content Industry

Applied to on-line content the advertising model leads to similar problems like in the traditional media. Dependence on advertising revenue puts pressure on content providers to consider advertising interests. Nevertheless new difficulties caused by the technical structure of online media, missing legal regulation and not yet established ethical rules, appear.

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611652/100438658181
 
Who owns the Internet and who is in charge?

The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet.
The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g.
Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers.
Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily.
Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed.
For a detailed report on Internet governance, click here.

TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
 
The plastic card invasion

The plastic card invasion.

The tendency of modern data-driven economies is to structure economic activity in such a way that an increasing amount of data is generated. For example, the fact that only a few years ago few people in continental Europe used a credit card, and that now almost everybody who has a bank account also has a credit card, shows that payment by credit card is preferred to anonymous cash transaction. If somebody pays by credit card, there are computers that register the transaction. They record who paid what amount where, and for what purpose. This is valuable information. It allows businesses to "better know their customers". Credit card companies today belong to the largest data repositories anywhere. However, credit card companies have tried to introduce cash cards, or "electronic purses", plastic cards which can be used in lieu of cash in shops - a type of payment, that is not really catching on. In the small town of Ennis, Ireland's "information age town" a field test carried out by Visa, found that people are extremely reluctant to change their cash into bits. "It is just too modern", was the conclusion of an Ennis shopkeeper.

Credit cards may be the most common, but certainly not the only way in which an economic activity produces a data surplus. In the end, the data surplus generated by a credit card is limited to just a few indicators. The tendency of the data body industry is to collect as much data as possible from each single transaction. Therefore, a range of new plastic card applications is emerging.

Most big retailers or service industries, offer customer cards which reward customers with certain discounts or gifts when used frequently. However, the cost of these discounts is easily set off by the value consumer data that is generated each time a card is pulled through the magnetic reading device. Frequent-flyer cards are among the most common plastic data-collecting devices. Often such frequent-flyer cards are also credit cards, in which case travel and consumption data are already combined at the point of sale, creating further rationalisation of the process.

Electronic networks have created a general tendency to move to move marketing decisions to the point of sale, rather than locating them in central locations. This way, the marketing process becomes cheaper and more efficient for the company.

The ideal situation for the data body industry and for government bureaucracy would be a complete centralised storage and management of people's data, and a collection process the pass unnoticed and ensures that the data in question are always current. Many efforts in this direction have been undertaken. One of the most recent such projects is called the smart card. Also referred to as chip cards (because it operates not just with a magnetic stripe but also an computer chip) smart cards are multi-application "intelligent" plastic cards that carry a lot more than the usual information about its holder. For example, a smart card can carry details about right of access to facilities, credit information, social security, and electoral status all in one. Technically there are no limits to the type of information stored on smart cards. In principle it is possible to store an individual's entire data body on a card. Not surprisingly, smart card technologies have been most readily accepted in places with a lack of a privacy protection culture, such as the US, the UK, Spain, and some Latin American Countries.

The Irish town of Ennis, although striving to become "one of the technologically most advanced towns in the world" may have frustrated the expectations of the plastic card industry. Yet this is only a minute, if embarrassing, setback on the path towards global rationalisation of data collection. The economic benefits which the plastic card data collection technologies promises for retailers, E-commerce, marketing and bureaucracies all over the world have given rise to a wealth of research programmes, field tests, projects and government policies, all aimed at promoting the data body economy and adopting it as the business model of the future.

Links to plastic card trade associations:

Card Europe - Association for Smart Card and Related Industries

AIM - Global Trade Association for Automatic Identification and Data Collection

Card Forum

Smart Card Industry Association

Links to plastic card research programmes:

MIT (Massachusetts Institute of Technology)

Ohio University

Pittsburgh University

Cranfield University

Links to publications:

Card Technology Magazine

Links to EU research programmes

ADEPT2

COCLICO

COST219

DISTINCT

SAMPO

SATURN

SOSCARD

Producers

Schlumberger

Gemplus

Bull

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611761/100438659752
 
MIT

The MIT (Massachusetts Institute of Technology) is a privately controlled coeducational institution of higher learning famous for its scientific and technological training and research. It was chartered by the state of Massachusetts in 1861 and became a land-grant college in 1863. During the 1930s and 1940s the institute evolved from a well-regarded technical school into an internationally known center for scientific and technical research. In the days of the Great Depression, its faculty established prominent research centers in a number of fields, most notably analog computing (led by Vannevar Bush) and aeronautics (led by Charles Stark Draper). During World War II, MIT administered the Radiation Laboratory, which became the nation's leading center for radar research and development, as well as other military laboratories. After the war, MIT continued to maintain strong ties with military and corporate patrons, who supported basic and applied research in the physical sciences, computing, aerospace, and engineering. MIT has numerous research centers and laboratories. Among its facilities are a nuclear reactor, a computation center, geophysical and astrophysical observatories, a linear accelerator, a space research center, supersonic wind tunnels, an artificial intelligence laboratory, a center for cognitive science, and an international studies center. MIT's library system is extensive and includes a number of specialized libraries; there are also several museums.

INDEXCARD, 1/6
 
Mass production

The term mass production refers to the application of the principles of specialization, division of labor, and standardization of parts to the manufacture of goods. The use of modern methods of mass production has brought such improvements in the cost, quality, quantity, and variety of goods available that the largest global population in history is now sustained at the highest general standard of living. A moving conveyor belt installed in a Dearborn, Michigan, automobile plant in 1913 cut the time required to produce flywheel magnetos from 18 minutes to 5 and was the first instance of the use of modern integrated mass production techniques.

INDEXCARD, 2/6
 
Slobodan Milosevic

Slobodan Milosevic (* 1941) is a Serbian political leader.
As a young man S. Milosevic joined the Communist Party, in 1984 the banker became head of the local Communist Party of Belgrade, in 1987 head of the Serb CP. Since 1989 he has been president of Serbia (since 1997 president of the new Federal Republic of Yugoslavia). During his reign the Yugoslav Republic broke up, bringing about the independence of Slovenia and Croatia and the war in Bosnia. In 1998 the Kosovo Crisis started.

INDEXCARD, 3/6
 
Assembly line

An assembly line is an industrial arrangement of machines, equipment, and workers for continuous flow of workpieces in mass production operations. An assembly line is designed by determining the sequences of operations for manufacture of each product component as well as the final product. Each movement of material is made as simple and short as possible with no cross flow or backtracking. Work assignments, numbers of machines, and production rates are programmed so that all operations performed along the line are compatible.

INDEXCARD, 4/6
 
Edward L. Bernays

Born 1891 in Vienna, Bernays was one of the founders of modern public relations. An enigmatic character, he was a master of mise en scène with far-reaching contacts in the world of business and politics. The nephew of Sigmund Freund and related with Heinrich Heine, he was also among the first to pursue PR for governments and to produce pseudo-events. Bernays considered the manipulation of public opinion as an important element of mass democracies and was of the opinion that only through PR a society's order can be kept.

INDEXCARD, 5/6
 
Menwith Hill Station

Menwith Hill Station is one of the biggest groundstations in the UKUSA alliance.It is run by the US National Security Agency (NSA), which monitors the world's communication for US intelligence. Menwith Hill employs 1,200 US civilians and servicemen to work around the clock. It went trough different stages of interception technology. First it was established to intercept radio signals, but now the main focus lays on intercepting and monitoring communication satellites with primary targets Europe, northern Africa and western Asia.

INDEXCARD, 6/6