1940s - Early 1950s: First Generation Computers

Probably the most important contributor concerning the theoretical basis for the digital computers that were developed in the 1940s was Alan Turing, an English mathematician and logician. In 1936 he created the Turing machine, which was originally conceived as a mathematical tool that could infallibly recognize undecidable propositions. Although he instead proved that there cannot exist any universal method of determination, Turing's machine represented an idealized mathematical model that reduced the logical structure of any computing device to its essentials. His basic scheme of an input/output device, memory, and central processing unit became the basis for all subsequent digital computers.

The onset of the Second World War led to an increased funding for computer projects, which hastened technical progress, as governments sought to develop computers to exploit their potential strategic importance.

By 1941 the German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. Two years later the British completed a secret code-breaking computer called Colossus to decode German messages and by 1944 the Harvard engineer Howard H. Aiken had produced an all-electronic calculator, whose purpose was to create ballistic charts for the U.S. Navy.

Also spurred by the war the Electronic Numerical Integrator and Computer (ENIAC), a general-purpose computer, was produced by a partnership between the U.S. government and the University of Pennsylvania (1943). Consisting of 18.000 vacuum tubes, 70.000 resistors and 5 million soldered joints, the computer was such a massive piece of machinery (floor space: 1,000 square feet) that it consumed 160 kilowatts of electrical power, enough energy to dim lights in an entire section of a bigger town.

Concepts in computer design that remained central to computer engineering for the next 40 years were developed by the Hungarian-American mathematician John von Neumann in the mid-1940s. By 1945 he created the Electronic Discrete Variable Automatic Computer (EDVAC) with a memory to hold both a stored program as well as data. The key element of the Neumann architecture was the central processing unit (CPU), which allowed all computer functions to be coordinated through a single source. One of the first commercially available computers to take advantage of the development of the CPU was the UNIVAC I (1951). Both the U.S. Census bureau and General Electric owned UNIVACs (Universal Automatic Computer).

Characteristic for first generation computers was the fact, that instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different binary-coded program called a machine language that told it how to operate. Therefore computers were difficult to program and limited in versatility and speed. Another feature of early computers was that they used vacuum tubes and magnetic drums for storage.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659338
 
fingerprint identification

Although fingerprinting smacks of police techniques used long before the dawn of the information age, its digital successor finger scanning is the most widely used biometric technology. It relies on the fact that a fingerprint's uniqueness can be defined by analysing the so-called "minutiae" in somebody's fingerprint. Minutae include sweat pores, distance between ridges, bifurcations, etc. It is estimated that the likelihood of two individuals having the same fingerprint is less than one in a billion.

As an access control device, fingerprint scanning is particularly popular with military institutions, including the Pentagon, and military research facilities. Banks are also among the principal users of this technology, and there are efforts of major credit card companies such as Visa and MasterCard to incorporate this finger print recognition into the bank card environment.

Problems of inaccuracy resulting from oily, soiled or cracked skins, a major impediment in fingerprint technology, have recently been tackled by the development a contactless capturing device (http://www.ddsi-cpc.com) which translates the characteristics of a fingerprint into a digitised image.

As in other biometric technologies, fingerprint recognition is an area where the "criminal justice" market meets the "security market", yet another indication of civilian spheres becomes indistinguishable from the military. The utopia of a prisonless society seems to come within the reach of a technology capable of undermining freedom by an upward spiral driven by identification needs and identification technologies.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611729/100438658358
 
Internet Software Consortium

The Internet Software Consortium (ISC) is a nonprofit corporation dedicated to the production of high-quality reference implementations of Internet standards that meet production standards. Its goal is to ensure that those reference implementations are properly supported and made freely available to the Internet community.

http://www.isc.org

INDEXCARD, 1/2
 
Harold. D. Lasswell

Harold. D. Lasswell (* 1902) studied at the London School of Economics. He then became a professor of social sciences at different Universities, like the University of Chicago, Columbia University, and Yale University. He also was a consultant for several governments. One of Lasswell's many famous works was Propaganda Technique in World War. In this he defines propaganda. He also discussed major objectives of propaganda, like to mobilize hatred against the enemy, to preserve the friendship of allies, to procure the co-operation of neutrals and to demoralize the enemy.

INDEXCARD, 2/2