How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
Positions Towards the Future of Copyright in the "Digital Age"

With the development of new transmission, distribution and publishing technologies and the increasing digitalization of information copyright has become the subject of vigorous debate. Among the variety of attitudes towards the future of traditional copyright protection two main tendencies can be identified:

Eliminate Copyright

Anti-copyrightists believe that any intellectual property should be in the public domain and available for all to use. "Information wants to be free" and copyright restricts people's possibilities concerning the utilization of digital content. An enforced copyright will lead to a further digital divide as copyright creates unjust monopolies in the basic commodity of the "information age". Also the increased ease of copying effectively obviates copyright, which is a relict of the past and should be expunged.

Enlarge Copyright

Realizing the growing economic importance of intellectual property, especially the holders of copyright (in particular the big publishing, distribution and other core copyright industries) - and therefore recipients of the royalties - adhere to the idea of enlarging copyright. In their view the basic foundation of copyright - the response to the need to provide protection to authors so as to give them an incentive to invest the time and effort required to produce creative works - is also relevant in a digital environment.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611725/100438659711
 
Louis Braille

b. Jan. 4, 1809, Coupvray, near Paris, France
d. Jan. 6, 1852, Paris, France

Educator who developed a system of printing and writing that is extensively used by the blind and that was named for him. Himself blind Braille became interested in a system of writing, exhibited at the school by Charles Barbier, in which a message coded in dots was embossed on cardboard. When he was 15, he worked out an adaptation, written with a simple instrument, that met the needs of the sightless. He later took this system, which consists of a six-dot code in various combinations, and adapted it to musical notation. He published treatises on his type system in 1829 and 1837.

INDEXCARD, 1/2
 
Chappe's fixed optical network

Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores.

Because this communication system was destined to practical military use, the transmitted messages were encoded. The messages were kept such secretly, even those who transmit them from tower to tower did not capture their meaning, they just transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best.

Forerunners of Chappe's optical network are the Roman smoke signals network and Aeneas Tacitus' optical communication system.

For more information on early communication networks see Gerard J. Holzmann and Bjoern Pehrson, The Early History of Data Networks.

INDEXCARD, 2/2