Challenges for Copyright by ICT: Internet Service Providers

ISPs (Internet Service Providers) (and to a certain extent also telecom operators) are involved in the copyright debate primarily because of their role in the transmission and storage of digital information. Problems arise particularly concerning caching, information residing on systems or networks of ISPs at the directions of users and transitory communication.

Caching

Caching it is argued could cause damage because the copies in the cache are not necessarily the most current ones and the delivery of outdated information to users could deprive website operators of accurate "hit" information (information about the number of requests for a particular material on a website) from which advertising revenue is frequently calculated. Similarly harms such as defamation or infringement that existed on the original page may propagate for years until flushed from each cache where they have been replicated.

Although different concepts, similar issues to caching arise with mirroring (establishing an identical copy of a website on a different server), archiving (providing a historical repository for information, such as with newsgroups and mailing lists), and full-text indexing (the copying of a document for loading into a full-text or nearly full-text database which is searchable for keywords or concepts).

Under a literal reading of some copyright laws caching constitutes an infringement of copyright. Yet recent legislation like the DMCA or the proposed EU Directive on copyright and related rights in the information society (amended version) have provided exceptions for ISPs concerning particular acts of reproduction that are considered technical copies (caching). Nevertheless the exemption of liability for ISPs only applies if they meet a variety of specific conditions. In the course of the debate about caching also suggestions have been made to subject it to an implied license or fair use defense or make it (at least theoretically) actionable.

Information Residing on Systems or Networks at the Direction of Users

ISPs may be confronted with problems if infringing material on websites (of users) is hosted on their systems. Although some copyright laws like the DMCA provide for limitations on the liability of ISPs if certain conditions are met, it is yet unclear if ISPs should generally be accountable for the storage of infringing material (even if they do not have actual knowledge) or exceptions be established under specific circumstances.

Transitory Communication

In the course of transmitting digital information from one point on a network to another ISPs act as a data conduit. If a user requests information ISPs engage in the transmission, providing of a connection, or routing thereof. In the case of a person sending infringing material over a network, and the ISP merely providing facilities for the transmission it is widely held that they should not be liable for infringement. Yet some copyright laws like the DMCA provide for a limitation (which also covers the intermediate and transient copies that are made automatically in the operation of a network) of liability only if the ISPs activities meet certain conditions.

For more information on copyright (intellectual property) related problems of ISPs (BBSs (Bulletin Board Service Operators), systems operators and other service providers) see:

Harrington, Mark E.: On-line Copyright Infringement Liability for Internet Service Providers: Context, Cases & Recently Enacted Legislation. In: Intellectual Property and Technology Forum. June 4, 1999.

Teran, G.: Who is Vulnerable to Suit? ISP Liability for Copyright Infringement. November 2, 1999.

TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659550
 
Problems of Copyright Management and Control Technologies

Profiling and Data Mining

At their most basic copyright management and control technologies might simply be used to provide pricing information, negotiate the purchase transaction, and release a copy of a work for downloading to the customer's computer. Still, from a technological point of view, such systems also have the capacity to be employed for digital monitoring. Copyright owners could for example use the transaction records generated by their copyright management systems to learn more about their customers. Profiles, in their crudest form consisting of basic demographic information, about the purchasers of copyrighted material might be created. Moreover copyright owners could use search agents or complex data mining techniques to gather more information about their customers that could either be used to market other works or being sold to third parties.

Fair Use

Through the widespread use of copyright management and control systems the balance of control could excessively be shifted in favor of the owners of intellectual property. The currently by copyright law supported practice of fair use might potentially be restricted or even eliminated. While information in analogue form can easily be reproduced, the protection of digital works through copyright management systems might complicate or make impossible the copying of material for purposes, which are explicitly exempt under the doctrine of fair use.

Provisions concerning technological protection measures and fair use are stated in the DMCA, which provides that "Since copying of a work may be a fair use under appropriate circumstances, section 1201 does not prohibit the act of circumventing a technological measure that prevents copying. By contrast, since the fair use doctrine is not a defense e to the act of gaining unauthorized access to a work, the act of circumventing a technological measure in order to gain access is prohibited." Also the proposed EU Directive on copyright and related rights in the information society contains similar clauses. It distinguishes between the circumvention of technical protection systems for lawful purposes (fair use) and the circumvention to infringe copyright. Yet besides a still existing lack of legal clarity also very practical problems arise. Even if the circumvention of technological protection measures under fair use is allowed, how will an average user without specialized technological know-how be able to gain access or make a copy of a work? Will the producers of copyright management and control systems provide fair use versions that permit the reproduction of copyrighted material? Or will users only be able to access and copy works if they hold a digital "fair use license" ("fair use licenses" have been proposed by Mark Stefik, whereby holders of such licenses could exercise some limited "permissions" to use a digital work without a fee)?

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659629
 
Bureaucratic data bunkers



Among the foremost of the data bunkers government bureaucracies. Bureaucracies are the oldest forms of bunkers and are today deeply engrained in modern societies. Bureaucracies have always had the function of collecting and administering the data of subjects. What make this process more problematic in the age of ICT is that a lot more data can be collected, they can be collected in clandestine ways (e.g. in surveillance situations), and the can be combined and merged using advanced data mining technologies. In addition, there is a greater rationale for official data collecting, as a lot more data is required for the functioning of public administration as in previous periods, as societies rush to adopt increasingly complex technologies, above all ICTs. The increasing complexity of modern societies means that an increasing number of bureaucratic decision is taken, all of which require a calculation process. Complexity, viewed through government spectacles, generates insecurity - a great deal of the bureaucratic activity therefore revolves around the topic of security.

In spite of the anti-bureaucratic rhetoric of most governments, these factors provides the bureaucracies with an increased hold on society. Foremost bureaucratic data bunkers include the following:

    Law enforcement agencies

    Fiscal agencies

    Intelligence agencies

    Social welfare agencies

    Social insurance institutions

    Public health agencies

    Educational institutions



These are agencies that enjoy the privileged protection of the state. Those among them that operate in the field of security are further protected against public scrutiny, as they operate in an area to which democratic reason has no access.

What makes the data repositories of these institutions different from private data bunkers is their "official", i.e. their politically binding and definitive character. CAE speak of the bureaucracy as a "concrete form of uninterruptible, official and legitimised memory."

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611761/100438659721
 
How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
The Copyright Industry

Copyright is not only about protecting the rights of creators, but has also become a major branch of industry with significant contributions to the global economy. According to the International Intellectual Property Alliance the U.S. copyright industry has grown almost three times as fast as the economy as a whole for the past 20 years. In 1997, the total copyright industries contributed an estimated US$ 529.3 billion to the U.S. economy with the core copyright industries accounting for US$ 348.4 billion. Between 1977 and 1997, the absolute growth rate of value added to the U.S. GDP by the core copyright industries was 241 %. Also the copyright industry's foreign sales in 1997 (US$ 66.85 billion for the core copyright industries) were larger than the U.S. Commerce Department International Trade Administration's estimates of the exports of almost all other leading industry sectors. They exceeded even the combined automobile and automobile parts industries, as well as the agricultural sector.

In an age where knowledge and information become more and more important and with the advancement of new technologies, transmission systems and distribution channels a further increase in the production of intellectual property is expected. Therefore as copyright establishes ownership in intellectual property it is increasingly seen as the key to wealth in the future.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438658710
 
The Piracy "Industry"

Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of intellectual property by permitting still easier copying, electronic sales and transmissions of illegally reproduced copyrighted works on a grand scale.

This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent copy-protection security measures.

Lately the International Intellectual Property Alliance has published a new report on the estimated trade losses due to piracy. (The IIPA assumes that their report actually underestimates the loss of income due to the unlawful copying and distribution of copyrighted works. Yet it should be taken into consideration that the IIPA is the representative of the U.S. core copyright industries (business software, films, videos, music, sound recordings, books and journals, and interactive entertainment software).)

Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)





Motion Pictures

Records & Music

Business Applications

Entertainment Software

Books





1999

1998

1999

1998

1999

1998

1999

1998

1999

1998

Total Losses

1323

1421

1684

1613

3211

3437

3020

2952

673

619



Total Losses (core copyright industries)

1999

1998

9910.0

10041.5




TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659531
 
Backbone Networks

Backbone networks are central networks usually of very high bandwidth, that is, of very high transmitting capacity, connecting regional networks. The first backbone network was the NSFNet run by the National Science Federation of the United States.

INDEXCARD, 1/6
 
WIPO

The World Intellectual Property Organization is one of the specialized agencies of the United Nations (UN), which was designed to promote the worldwide protection of both industrial property (inventions, trademarks, and designs) and copyrighted materials (literary, musical, photographic, and other artistic works). It was established by a convention signed in Stockholm in 1967 and came into force in 1970. The aims of WIPO are threefold. Through international cooperation, WIPO promotes the protection of intellectual property. Secondly, the organization supervises administrative cooperation between the Paris, Berne, and other intellectual unions regarding agreements on trademarks, patents, and the protection of artistic and literary work and thirdly through its registration activities the WIPO provides direct services to applicants for, or owners of, industrial property rights.

INDEXCARD, 2/6
 
ARPAnet

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. Being an experimental network mainly serving the purpose to test the feasibility of wide area networks, the possibility of remote computing, it was created for resource sharing between research institutions, not for messaging services like E-mail. Although research was sponsored by US military, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and links the first two computers, one of them located at the University of California, Los Angeles, the other at the Stanford Research Institute.

But ARPAnet has not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers offered a general public access to NSFnet. Beginning in 1995, after having become the backbone of the Internet in the USA, NSFnet was turned over to a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA commercial users already outnumbered military and academic users in 1994.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

INDEXCARD, 3/6
 
Telnet

Telnet allows you to login remotely on a computer connected to the Internet.

INDEXCARD, 4/6
 
Gateway

A gateway is a computer supplying point-to-multipoint connections between computer networks.

INDEXCARD, 5/6
 
IIPA

The International Intellectual Property Alliance formed in 1984 is a private sector coalition and represents the U.S. copyright-based industries. It is comprised of seven trade associations: Association of American Publishers, AFMA, Business Software Alliance, Interactive Digital Software Association, Motion Picture Association of America, National Music Publishers' Association and Recording Industry Association of America. IIPA and its member's track copyright legislative and enforcement developments in over 80 countries and aim at a legal and enforcement regime for copyright that deters piracy. On a national level IIPA cooperates with the U.S. Trade Representative and on the multilateral level has been involved in the development of the TRIPS (Trade-Related Aspects of Intellectual Property Rights) agreement of the WTO (World Trade Organization) and also participates in the copyright discussion of the WIPO (World Intellectual Property Organization).

INDEXCARD, 6/6