Biometrics applications: privacy issues

All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy.

Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control.

While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology.

The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; http://www.eds.com) are also suppliers of biometric systems to the intelligence agencies of government and industry.

Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks.

TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611729/100438658826
 
How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
History: European Tradition

Only in Roman times the first rights referring to artistic works appeared. Regulations resembling a lasting exclusive right to copy did not occur until the 17th century. Before copyright was a private arrangement between guilds able to reproduce copies in commercial quantities.

In France and Western European countries "droits d'auteur" or author's rights is the core of what in the Anglo-American tradition is called copyright. Such rights are rooted in the republican revolution of the late 18th century, and the Rights of Man movement. Today in the European system the creator is front and center; later exploiters are only secondary players.

France

During the 18th century France gradually lost the ability to restrict intellectual property. Before the Revolution, all books, printers and booksellers had to have a royal stamp of approval, called a "privilege". In return for their lucrative monopoly, the French guild of printers and booksellers helped the police to suppress anything that upset royal sensibilities or ran contrary to their interests. Still there were also a whole lot of underground printers who flooded the country with pirated, pornographic and seditious literature. And thousands of writers, most at the edge of starvation.

In 1777 the King threatened the monopoly by reducing the duration of publisher's privileges to the lifetime of the authors. Accordingly a writer's work would go into the public domain after his death and could be printed by anyone. The booksellers fought back by argumenting that, no authority could take their property from them and give it to someone else. Seven months later, in August 1789, the revolutionary government ended the privilege system and from that time on anyone could print anything. Early in 1790 Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet proposed giving authors power over their own work lasting until ten years after their deaths. The proposal - the basis for France's first modern copyright law - passed in 1793.

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659414
 
The Piracy "Industry"

Until recent years, the problem of piracy (the unauthorized reproduction or distribution of copyrighted works (for commercial purposes)) was largely confined to the copying and physical distribution of tapes, disks and CDs. Yet the emergence and increased use of global data networks and the WWW has added a new dimension to the piracy of intellectual property by permitting still easier copying, electronic sales and transmissions of illegally reproduced copyrighted works on a grand scale.

This new development, often referred to as Internet piracy, broadly relates to the use of global data networks to 1) transmit and download digitized copies of pirated works, 2) advertise and market pirated intellectual property that is delivered on physical media through the mails or other traditional means, and 3) offer and transmit codes or other technologies which can be used to circumvent copy-protection security measures.

Lately the International Intellectual Property Alliance has published a new report on the estimated trade losses due to piracy. (The IIPA assumes that their report actually underestimates the loss of income due to the unlawful copying and distribution of copyrighted works. Yet it should be taken into consideration that the IIPA is the representative of the U.S. core copyright industries (business software, films, videos, music, sound recordings, books and journals, and interactive entertainment software).)

Table: IIPA 1998 - 1999 Estimated Trade Loss due to Copyright Piracy (in millions of US$)





Motion Pictures

Records & Music

Business Applications

Entertainment Software

Books





1999

1998

1999

1998

1999

1998

1999

1998

1999

1998

Total Losses

1323

1421

1684

1613

3211

3437

3020

2952

673

619



Total Losses (core copyright industries)

1999

1998

9910.0

10041.5




TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659531
 
Problems of Copyright Management and Control Technologies

Profiling and Data Mining

At their most basic copyright management and control technologies might simply be used to provide pricing information, negotiate the purchase transaction, and release a copy of a work for downloading to the customer's computer. Still, from a technological point of view, such systems also have the capacity to be employed for digital monitoring. Copyright owners could for example use the transaction records generated by their copyright management systems to learn more about their customers. Profiles, in their crudest form consisting of basic demographic information, about the purchasers of copyrighted material might be created. Moreover copyright owners could use search agents or complex data mining techniques to gather more information about their customers that could either be used to market other works or being sold to third parties.

Fair Use

Through the widespread use of copyright management and control systems the balance of control could excessively be shifted in favor of the owners of intellectual property. The currently by copyright law supported practice of fair use might potentially be restricted or even eliminated. While information in analogue form can easily be reproduced, the protection of digital works through copyright management systems might complicate or make impossible the copying of material for purposes, which are explicitly exempt under the doctrine of fair use.

Provisions concerning technological protection measures and fair use are stated in the DMCA, which provides that "Since copying of a work may be a fair use under appropriate circumstances, section 1201 does not prohibit the act of circumventing a technological measure that prevents copying. By contrast, since the fair use doctrine is not a defense e to the act of gaining unauthorized access to a work, the act of circumventing a technological measure in order to gain access is prohibited." Also the proposed EU Directive on copyright and related rights in the information society contains similar clauses. It distinguishes between the circumvention of technical protection systems for lawful purposes (fair use) and the circumvention to infringe copyright. Yet besides a still existing lack of legal clarity also very practical problems arise. Even if the circumvention of technological protection measures under fair use is allowed, how will an average user without specialized technological know-how be able to gain access or make a copy of a work? Will the producers of copyright management and control systems provide fair use versions that permit the reproduction of copyrighted material? Or will users only be able to access and copy works if they hold a digital "fair use license" ("fair use licenses" have been proposed by Mark Stefik, whereby holders of such licenses could exercise some limited "permissions" to use a digital work without a fee)?

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659629
 
Memex Animation by Ian Adelman and Paul Kahn


INDEXCARD, 1/7
 
Economic rights

The economic rights (besides moral rights and in some cases also neighboring rights) granted to the owners of copyright usually include 1) copying or reproducing a work, 2) performing a work in public, 3) making a sound recording of a work, 4) making a motion picture of a work, 5) broadcasting a work, 6) translating a work and 7) adapting a work. Under certain national laws some of these rights are not exclusive rights of authorization but in specific cases, merely rights to remuneration.

INDEXCARD, 2/7
 
Virtual Marylin Monroe

This is the story of the virtual Marylyn Monroe created by MRALab in Switzerland. The biography features her personal and professional stories. This being the biography of a virtual being, it does not end with the present and includes, instead, a chapter on her destiny.

http://www.miralab.unige.ch/MARILYN/VIRTUAL/virtual.html

http://www.miralab.unige.ch/MARILYN/VIRTUAL/v...
INDEXCARD, 3/7
 
Internet Relay Chat (IRC)

IRC is a text-based chat system used for live discussions of groups.

For a history of IRC see Charles A. Gimon, IRC: The Net in Realtime, http://www.skypoint.com/~gimonca/irc2.html

http://www.skypoint.com/~gimonca/irc2.html
INDEXCARD, 4/7
 
Bulletin Board Systems

A BBS (bulletin board system) is a computer that can be reached by computer modem dialing (you need to know the phone number) or, in some cases, by Telnet for the purpose of sharing or exchanging messages or other files. Some BBSs are devoted to specific interests; others offer a more general service. The definitive BBS List says that there are 40,000 BBSs worldwide.

Bulletin board systems originated and generally operate independently of the Internet.

Source: Whatis.com

INDEXCARD, 5/7
 
World Wide Web (WWW)

Probably the most significant Internet service, the World Wide Web is not the essence of the Internet, but a subset of it. It is constituted by documents that are linked together in a way you can switch from one document to another by simply clicking on the link connecting these documents. This is made possible by the Hypertext Mark-up Language (HTML), the authoring language used in creating World Wide Web-based documents. These so-called hypertexts can combine text documents, graphics, videos, sounds, and Java applets, so making multimedia content possible.

Especially on the World Wide Web, documents are often retrieved by entering keywords into so-called search engines, sets of programs that fetch documents from as many servers as possible and index the stored information. (For regularly updated lists of the 100 most popular words that people are entering into search engines, click here). No search engine can retrieve all information on the whole World Wide Web; every search engine covers just a small part of it.

Among other things that is the reason why the World Wide Web is not simply a very huge database, as is sometimes said, because it lacks consistency. There is virtually almost infinite storage capacity on the Internet, that is true, a capacity, which might become an almost everlasting too, a prospect, which is sometimes consoling, but threatening too.

According to the Internet domain survey of the Internet Software Consortium the number of Internet host computers is growing rapidly. In October 1969 the first two computers were connected; this number grows to 376.000 in January 1991 and 72,398.092 in January 2000.

World Wide Web History Project, http://www.webhistory.org/home.html

http://www.searchwords.com/
http://www.islandnet.com/deathnet/
http://www.salonmagazine.com/21st/feature/199...
INDEXCARD, 6/7
 
Backbone Networks

Backbone networks are central networks usually of very high bandwidth, that is, of very high transmitting capacity, connecting regional networks. The first backbone network was the NSFNet run by the National Science Federation of the United States.

INDEXCARD, 7/7