1700 - 1800 A.D. 1713 In 1714 Henry Mill got granted a patent for his idea of an "artificial machine or method" for forgery-proof writing. Still it was not before 1808 that the first typewriter proven to have worked was built by Pellegrino Turri for his visually impaired friend, the Countess Carolina Fantoni da Fivizzono. The commercial production of typewriters began in 1873. For a brief history of typewriters see Richard Polt, The Classic Typewriter Page, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but did not put them into practical use. The first optical photocopier was not patented before 1843, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. Yet it was not before 1902 that images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as a telecommunication service in Germany in 1922. 1794 Claude Chappe built a fixed optical network between Paris and Lille. Covering a distance of about 240kms, it consisted of fifteen towers with semaphores. Because the communication system was designed for practical military use, the transmitted messages were encoded. The messages were kept such a secret that even those who transmit them from tower to tower did not capture their meaning; they transmitted codes they did not understand. Depending on weather conditions, messages could be sent at a speed of 2880 kms/hr at best. Forerunners of Chappe's optical network are the For more information on early communication networks see |
|
1000 B.C. - 0 900 B.C. A postal service is used for governmental purposes in China. 500 B.C. In ancient Greece trumpets, drums, shouting, beacon, fires, smoke signals, and mirrors are used for message transmission. 4th century B.C. Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of a message transmission while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by a torch signal that the appropriate water level had been reached. The methods disadvantage was that the possible messages were restricted to a given code, but as the system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand the messages unless they possessed the codebook. With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until For further information see Joanne Chang & Anna Soellner, Decoding Device, 3rd century B.C. Wax tablets are used as writing material in Mesopotamia, ancient Greece, and Etruria. 2nd century B.C. In China paper is invented. 1st century B.C. The use of codices instead of scrolls - basically the hardcover book as we know it today - is an essential event in European history. To quote accurately by page number, to browse through pages and to skip chapters - things that were impossible when reading scrolls - becomes possible. In the computer age we are witnesses to a kind of revival of the scrolls as we scroll up and down a document. The introduction of hypertext possibly marks the beginning of a similar change as has taken place with the substitution of scrolls with codices. |
|
Commercial vs. Independent Content: Human and Financial Resources - Concerning their human and financial resources commercial media and independent content provider are an extremely unequal pair. While the 1998 revenues of the world's leading media conglomerates (AOL Time Warner, Disney, Bertelsmann, Viacom and the News Corporation) amounted to US$ 91,144,000,000 provider of independent content usually act on a non-profit basis and to a considerable extent depend on donations and contributions. Also the human resources they have at their disposal quite differ. Viacom for example employs 112,000 people. Alternative media conversely are mostly run by a small group of activists, most of them volunteers. Moreover the majority of the commercial media giants has a multitude of subsidiaries (Bertelsmann for instance has operations in 53 countries), while independent content provider in some cases do not even have proper office spaces. Asked about their offices number of square meters Frank Guerrero from RTMark comments "We have no square meters at all, because we are only on the web. I guess if you add up all of our servers and computers we would take up about one or two square meters." |
|
Key-Systems As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce. Key cryptosystems try to provide more privacy. symmetric-key cryptosystems: The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it? In former times messengers or pigeons were doing the exchange of those keys. Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated. Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms. some symmetric-key systems are: - DES (Data Encryption Standard), the standard for credit cards - Triple-DES, which is a variation of DES, encrypting the plaintext three times. - IDEA (International Data Encryption Standard) - blowfish encryption algorithm, which is said to be faster than DES and IDEA Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not. For further information see: |
|
Digital Signatures, Timestamps etc Most computer systems are far from being secure. A lack of security - it is said - might hinder the developments of new information technologies. Everybody knows electronic transactions involve a more or less calculated risk. Rumors about insecurity let consumers doubt whether the commodity of e-commerce is bigger or its risks. First of all the market depends on the consumer's confidence. To provide that another application for public key cryptography gets essential: the digital signature, which is used to verify the authenticity of the sender of certain data. It is done with a special private key, and the public key is verifying the signature. This is especially important if the involved parties do not know one another. The DSA (= Digital Signature Algorithm) is a public-key system which is only able to sign digitally, not to encrypt messages. In fact digital signature is the main-tool of cryptography in the private sector. Digital signatures need to be given for safe electronic payment. It is a way to protect the confidentiality of the sent data, which of course could be provided by other ways of cryptography as well. Other security methods in this respect are still in development, like digital money (similar to credit cards or checks) or digital cash, a system that wants to be anonymous like cash, an idea not favored by governments as it provides many opportunities for money laundry and illegal transactions. If intellectual property needs to be protected, a digital signature, together with a digital timestamp is regarded as an efficient tool. In this context, the difference between identification and authentication is essential. In this context smartcards and firewalls are relevant, too. A lot of digital transactions demand for passwords. More reliable for authentication are biometric identifiers, full of individual and unrepeatable codes, signatures that can hardly be forged. For more terms of cryptography and more information see: |
|
Challenges for Copyright by ICT: Introduction Traditional copyright and the practice of paying Yet again new technologies have altered the way of how (copyrighted) works are produced, copied, made obtainable and distributed. The emergence of global electronic networks and the increased availability of digitalized intellectual property confront existing copyright with a variety of questions and challenges. Although the combination of several types of works within one larger work or on one data carrier, and the digital format (although this may be a recent development it has been the object of detailed legal scrutiny), as well as networking (telephone and cable networks have been in use for a long time, although they do not permit interactivity) are nothing really new, the circumstance that recent technologies allow the presentation and storage of text, sound and visual information in digital form indeed is a novel fact. Like that the entire information can be generated, altered and used by and on one and the same device, irrespective of whether it is provided online or offline. |
|
Gutenberg's printing press, 1455 Gutenberg's printing press, an innovative aggregation of inventions known for centuries before Gutenberg: the olive oil press, oil-based ink, block-print technology, and movable types, allowed the mass production of the movable type used to reproduce a page of text and increased the production rate enormously. During the Middle Ages monks took at least a year over making a handwriting copy of a book. Gutenberg printed about 300 sheets per day. Because parchment was too costly for mass production - often for the production of one copy of a medieval book a whole flock of sheep was used - it was substituted by cheap paper made from recycled clothing left over from the massive number of dead caused by the Great Plague. Within forty-five years, in 1500, already ten million copies were available for a few hundred thousand literate. Because individuals could examine a range of opinions now, the printed Bible, especially after having been translated into German by Martin Luther, and increasing literacy added to the subversion of clerical authorities. The interest in books increased with the rise of vernacular, non-Latin literary texts, beginning with Dante's Divine Comedy, the first literary text written in Italian. Among others, the improvement of the distribution and the production of books and increased literacy made the development of print mass media possible. Michael Giesecke (Sinnenwandel Sprachwandel Kulturwandel. Studien zur Vorgeschichte der Informationsgesellschaft, Frankfurt am Main: Suhrkamp, 1992) has shown that due to a division of labor among authors, printers and typesetters Gutenberg's invention increasingly led to a standardization of - written and unwritten - language in form of orthography, grammar and signs. To communicate one's ideas became linked to the use of a kind of code, and reading became a kind of rite of passage, in every human's life an important step towards independency. With the increasing linkage of knowledge to wide reading and learnedness, the history of knowledge becomes the history of readings, of readings dependent on chance and on circumstance. For further details see: Martin Warnke, Text und Technik, Bruce Jones, Manuscripts, Books, and Maps: The Printing Press and a Changing World, |
|
cryptology also called "the study of code". It includes both, cryptography and cryptoanalysis |
|
Invention of photo copies, 1727 Searching for the Balduinist fluorescenting phosphor (Balduinischer Leuchtphosphor), an artificial fluorescent, Johann Heinrich Schulze realized the first photocopies, but does not put them into practical use. Not before 1843 the first optical photocopier was patented, when William Henry Fox Talbot got granted a patent for his magnifying apparatus. In 1847 Frederick Collier Bakewell developed a procedure for telecopying, a forerunner of the fax machine. But not before 1902 images could be transmitted. Almost 200 years after Schulze's discovery, for the first time photo telegraphy was offered as telecommunication service in Germany in 1922. Source: Klaus Urbons, Copy Art. Kunst und Design mit dem Fotokopierer, Köln: Dumont, 1993 (2nd edition) |
|
Convergence, 2000- Digital technologies are used to combine previously separated communication and media systems as telephony, audiovisual technologies and computing to new services and technologies, thus forming extensions of existing communication systems and resulting in fundamentally new communication systems. This is what is meant by today's new buzzwords "multimedia" and "convergence". Classical dichotomies as the one of computing and telephony and traditional categorisations no longer apply, because these new services no longer fit traditional categories. |
|
RSA The best known of the two-key cryptosystems developed in the mid-1980s is the Rivest-Shamir-Adleman (RSA) cryptoalgorithm, which was first published in April, 1977. Since that time, the algorithm has been employed in the most widely-used Internet electronic communications encryption program, |
|
Clipper Chip The Clipper Chip is a cryptographic device proposed by the U.S. government that purportedly intended to protect private communications while at the same time permitting government agents to obtain the "keys" upon presentation of what has been vaguely characterized as "legal authorization." The "keys" are held by two government "escrow agents" and would enable the government to access the encrypted private communication. While Clipper would be used to encrypt voice transmissions, a similar chip known as Capstone would be used to encrypt data. The underlying cryptographic algorithm, known as Skipjack, was developed by the National Security Agency (NSA). |
|