Challenges for Copyright by ICT: Introduction

Traditional copyright and the practice of paying royalties to the creators of intellectual property have emerged with the introduction of the printing press (1456). Therefore early copyright law has been tailored to the technology of print and the (re) production of works in analogue form. Over the centuries legislation concerning the protection of intellectual property has been adapted several times in order to respond to the technological changes in the production and distribution of information.

Yet again new technologies have altered the way of how (copyrighted) works are produced, copied, made obtainable and distributed. The emergence of global electronic networks and the increased availability of digitalized intellectual property confront existing copyright with a variety of questions and challenges. Although the combination of several types of works within one larger work or on one data carrier, and the digital format (although this may be a recent development it has been the object of detailed legal scrutiny), as well as networking (telephone and cable networks have been in use for a long time, although they do not permit interactivity) are nothing really new, the circumstance that recent technologies allow the presentation and storage of text, sound and visual information in digital form indeed is a novel fact. Like that the entire information can be generated, altered and used by and on one and the same device, irrespective of whether it is provided online or offline.


TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611725/100438659517
 
1400 - 1500 A.D.

1455
Johannes Gutenberg publishes the Bible as the first book in Europe by means of a movable metal font.

Gutenberg's printing press was an innovative aggregation of inventions known for centuries before Gutenberg: the olive oil press, oil-based ink, block-print technology, and movable types allowed the mass production of the movable type used to reproduce a page of text and enormously increased the production rate. During the Middle Ages it took monks at least a year to make a handwritten copy of a book. Gutenberg could print about 300 sheets per day. Because parchment was too costly for mass production - for the production of one copy of a medieval book often a whole flock of sheep was used - it was substituted by cheap paper made from recycled clothing of the massive number of deads caused by the Great Plague.

Within forty-five years, in 1500, ten million copies were available for a few hundred thousand literate people. Because individuals could examine a range of opinions now, the printed Bible - especially after having been translated into German by Martin Luther - and increasing literacy added to the subversion of clerical authorities. The interest in books grew with the rise of vernacular, non-Latin literary texts, beginning with Dante's Divine Comedy, the first literary text written in Italian.

Among others the improvement of the distribution and production of books as well as increased literacy made the development of print mass media possible.

Michael Giesecke (Sinnenwandel Sprachwandel Kulturwandel. Studien zur Vorgeschichte der Informationsgesellschaft, Frankfurt am Main: Suhrkamp, 1992) has shown that due to a division of labor among authors, printers and typesetters Gutenberg's invention increasingly led to a standardization of - written and unwritten - language in form of orthography, grammar and signs. To communicate one's ideas became linked to the use of a code, and reading became a kind of rite of passage, an important step towards independency in a human's life.

With the growing linkage of knowledge to reading and learning, the history of knowledge becomes the history of reading, of reading dependent on chance and circumstance.

For further details see:
Martin Warnke, Text und Technik, http://www.uni-lueneburg.de/
Bruce Jones, Manuscripts, Books, and Maps: The Printing Press and a Changing World, http://communication.ucsd.edu/bjones/Books/booktext.html

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611796/100438659777
 
Asymmetric or Public-Key-Cryptosystems

Here the keys for encryption and decryption differ. There needs to exist a private key, which is only known to the individual, and a public key, which is published. Every person has her or his own private key that is never published. It is used for decrypting only. Mathematically the different keys are linked to each other, still it is nearly impossible to derive the private key from the public one.
For sending a message to someone, one has to look up the other's public key and encrypt the message with it. The keyholder will use his/her private key to decrypt it. While everybody can send a message with the public key, the private key absolutely has to stay secret - and probably will.

"The best system is to use a simple, well understood algorithm which relies on the security of a key rather than the algorithm itself. This means if anybody steals a key, you could just roll another and they have to start all over." (Andrew Carol)

very famous examples for public-key systems are:

· RSA:
The RSA is probably one of the most popular public-key cryptosystems. With the help of RSA, messages can be encrypted, but also digital signatures are provided.
The mathematics behind are supposedly quite easy to understand (see: http://world.std.com/~franl/crypto/rsa-guts.html.

· PGP:
PGP is a public key encryption program. Most of all it is used for e-mail encryption.
It is supposed to be quite safe - until now.

· PGPi is simply the international variation of PGP.

for further information about the RSA and other key-systems visit the RSA homepage:
http://www.rsa.com/rsalabs/faq/
http://www.rsa.com/rsalabs/faq/questions.html
or:
http://www.pgpi.org

All of those tools, like hash functions, too, can help to enhance security and prevent crime.
They can theoretically, but sometimes they do not, as the example of the published credit card key of France in March 2000 showed.
For more information see:
http://news.voila.fr/news/fr.misc.cryptologie

Still, cryptography can help privacy.
On the other hand cryptography is only one element to assure safe transport of data. It is especially the persons using it who have to pay attention. A key that is told to others or a lost cryptographic key are the end of secrecy.

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438659074
 
Key-Systems

As stated, telecommunication is seen as an unreliable media for transporting secret messages. Therefore today, cryptography is needed more than ever before, especially for e-commerce.
Key cryptosystems try to provide more privacy.

symmetric-key cryptosystems:
The same key is used for both encryption and decryption. In this case the encipherer and the recipient of the message/text have to agree on a common key before the enciphering-process can start. And most of all they should trust each other. And exactly this is the main problem of this system: how to exchange the key without offering an opportunity for stealing it?
In former times messengers or pigeons were doing the exchange of those keys.

Symmetric-key systems make sense in small entities. If a lot of people are spread over a wide area and belong to the same network, distributing the keys starts getting complicated.
Today, those cryptosystems get controlled by other keys, based on highly complex mathematical algorithms.
some symmetric-key systems are:

- DES (Data Encryption Standard), the standard for credit cards
- Triple-DES, which is a variation of DES, encrypting the plaintext three times.
- IDEA (International Data Encryption Standard)
- blowfish encryption algorithm, which is said to be faster than DES and IDEA

Security and confidence are the key-words for a popular key-system: As DES and its successors have been used for so many years and by many people without having been broken, they are considered safe - safer than others, not used that frequently, no matter whether they are actually safer or not.

For further information see:
http://www.sbox.tu-graz.ac.at/home/j/jonny/projects/crypto/symmetr/content.htm

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438659090
 
Epilogue

As scientists are working hard on a quantum computer and also on quantum cryptography one can imagine that another revolution in the study of encryption has to be expected within the next years. By then today's hardware and software tools will look extraordinary dull. At the moment it is impossible to foresee the effects on cryptography and democratic developments by those means; the best and the worst can be expected at the same time. A certain ration of pessimism and prosecution mania are probably the right mixture of emotions about those tendencies, as the idea of big brother has come into existence long ago.

At the same time it will - in part - be a decision of the people to let science work against them or not. Acceleration of data-transmission calls for an acceleration of encryption-methods. And this again falls back on us, on an acceleration of daily life, blurring the private and the public for another time.
We live in an intersection, job and private life growing together. Cryptography cannot help us in that case. The privacy in our mind, the virtuality of all private and public lies in the field of democracy, or at least what is - by connection to the Human Rights - regarded as democracy.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438658875
 
Extract of Disney’s Content Production and Distribution Holdings

Although the traditional media companies first steps into the digital sphere were fairly clumsy, they have quickly learned from their mistakes and continued to enlarge their Internet presence. Time Warner now for instance operates about 130 Web-Sites (http://www.timewarner.com/corp/about/pubarchive/websites.html). Anyhow the stronger online-engagement of the big media conglomerates by 1998 has led to the establishment of a new pattern: "More than three-quarters of the 31 most visited news and entertainment websites were affiliated with large media firms, and most of the rest were connected to outfits like AOL and Microsoft." (Broadcasting and Cable, 6/22/98).

During the last years many of the smaller players in the field of digital media have been driven out of competition by the huge media conglomerates. This mainly is a result of the advantages that the commercial media giants have over their less powerful counterparts:

    As engagement in online activities mostly does not lead to quick profits, investors must be able to take losses, which only powerful companies are able to.



    Traditional media outlets usually have huge stocks of digital programming, which they can easily plug into the Internet at little extra cost.



    To generate audience, the big media conglomerates constantly promote their Websites and other digital media products on their traditional media holdings.



    As possessors of the hottest "brands" commercial media companies often get premier locations from browser software makers, Internet service providers, search engines and portals.



    Having the financial resources at their disposition the big media firms are aggressive investors in start-up Internet media companies.



Commercial media companies have close and long ties to advertisers, which enables them to seize most of these revenues.

TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611795/100438659167
 
Industrial design

Industrial design refers to the ornamental aspect of a useful article which may constitute of two or three-dimensional elements. To be qualified for intellectual property protection the design must be novel or original. Protection can be obtained through registration in a government office and usually is given for 10 to 15 years.

INDEXCARD, 1/5
 
Microsoft Corporation

Founded by Bill Gates and Paul Allen and headquartered in Redmond, USA, Microsoft Corporation is today's world-leading developer of personal-computer software systems and applications. As MS-DOS, the first operating system released by Microsoft, before, Windows, its successor, has become the de-facto standard operating system for personal computer. According to critics and following a recent court ruling this is due to unfair competition.

http://www.microsoft.com

For more detailed information see the Encyclopaedia Britannica: http://www.britannica.com/bcom/eb/article/4/0,5716,1524+1+1522,00.html

http://www.microsoft.com/
http://www.britannica.com/bcom/eb/article/4/0...
INDEXCARD, 2/5
 
VISA

Visa International's over 21,000 member financial institutions have made VISA one of the world's leading full-service payment network. Visa's products and services include Visa Classic card, Visa Gold card, Visa debit cards, Visa commercial cards and the Visa Global ATM Network. VISA operates in 300 countries and territories and also provides a large consumer payments processing system.

INDEXCARD, 3/5
 
Roman smoke telegraph network, 150 A.D.

The Roman smoke signals network consisted of towers within visible range of each other and had a total length of about 4500 kilometers. It was used for military signaling.

For a similar telegraph network in ancient Greece see Aeneas Tacitus' optical communication system.

INDEXCARD, 4/5
 
Optical communication system by Aeneas Tacitus, 4th century B.C.

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook.

With communication separated from transportation, the distant became near.

Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

http://www.smith.edu/hsc/museum/ancient_inven...
INDEXCARD, 5/5