History: European Tradition Only in Roman times the first rights referring to artistic works appeared. Regulations resembling a lasting exclusive right to copy did not occur until the 17th century. Before copyright was a private arrangement between guilds able to reproduce copies in commercial quantities. In France and Western European countries "droits d'auteur" or author's rights is the core of what in the Anglo-American tradition is called copyright. Such rights are rooted in the republican revolution of the late 18th century, and the Rights of Man movement. Today in the European system the creator is front and center; later exploiters are only secondary players. France During the 18th century France gradually lost the ability to restrict In 1777 the King threatened the monopoly by reducing the duration of publisher's privileges to the lifetime of the authors. Accordingly a writer's work would go into the public domain after his death and could be printed by anyone. The booksellers fought back by argumenting that, no authority could take their property from them and give it to someone else. Seven months later, in August 1789, the revolutionary government ended the privilege system and from that time on anyone could print anything. Early in 1790 Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet proposed giving authors power over their own work lasting until ten years after their deaths. The proposal - the basis for France's first modern copyright law - passed in 1793. |
|
Key Recovery Systems As stated before the sense of cryptography is a properly designed cryptosystem making it essentially impossible to recover encrypted data without any knowledge of the used key. The issue of lost keys and the being-locked-out from one's own data as a consequence favors key recovery systems. On the other hand the counter argument is confidentiality: as soon as a possibility to recover a key is provided, the chances for abuses grow. Finally it is the state that does not want to provide too much secrecy. On the contrary. During the last 20 years endless discussions about the state's necessity and right to restrict private cryptography have taken place, as the governments rarely care for the benefit of private users if they believe in catching essential informations about any kind of enemy, hence looking for unrestricted access to all keys. The list of "key recovery," "key escrow," and "trusted third-party" as encryption requirements, suggested by governmental agencies, covers all the latest developments and inventions in digital technology. At the same time the NSA, one of the world's most advanced and most secret enterprises for cryptography, worked hard in getting laws through to forbid the private use of strong encryption in one way or the other. Still, it is also organizations like this one that have to admit that key recovery systems are not without any weaknesses, as the U.S. Escrowed Encryption Standard, the basis for the famous and controversially discussed Clipper Chip, showed. The reason for those weaknesses is the high complexity of those systems. Another aspect is that key recovery systems are more expensive and certainly much less secure than other systems. So, why should anyone use them? In that context, one has to understand the legal framework for the use of cryptography, a strict framework in fact, being in high contradiction to the globalised flow of communication. |
|
History: "The South" In many traditional Southern countries awe and mystery surround the created object into which the creator projects spirit and soul. Also in contrast with the Western individual-based concept of intellectual property rights it is custom to recognize 'collective', 'communal' or 'folkloric' copyright. Folkloric copyright acknowledges rights to all kinds of knowledge, ideas and innovations produced in 'intellectual commons'. Such rights are not limited to the lifetime of an individual but rather exist in perpetuity with a specific group or an entire people. Islamic Tradition Already early Islamic jurists recognized a creator's right or copyright and offered protection against piracy. Traditional Islamic law treats infringement as a breach of ethics, not as a criminal act of theft. Punishment is carried out in the form of defamation of the infringer and the casting of shame on his tribe. Only in recent years many Islamic countries have adopted formal copyright statutes. |
|
Governmental Regulations The new U.S. regulations are based on the Wassenaar Arrangement Revision of 1998, where exports without license of 56 bit For more information see: Seven states stay excluded from the new freedom. These are states like Libya, Iraq, Iran, North Korea and Cuba, altogether states seen as terrorist supporting. No encryption tools may be exported into those countries. This is, what happened in the USA, whereas in Germany the issue of a cryptography-law is still on the agenda. Until now, in Germany, everyone can decide by her-/himself, whether she/he wants to encrypt electronic messages or not. Some organizations fear that this could get changed soon. Therefore an urgent action was organized in February 2000 to demonstrate the government that people want the freedom to decide on their own. One governmental argument is that only very few people actually use cryptography. Therefore the urgent action is organized as a campaign for using it more frequently. For more information on this see: Other European countries have more liberate laws on cryptography, like France. Austria doesn't have any restrictions at all, probably because of a governmental lack of interest more than accepting freedom. The (former) restrictions in the bigger countries influenced and hindered developments for safer key-systems, e.g. the key-length was held down extraordinarily. "Due to the suspicious nature of crypto users I have a feeling DES will be with us forever, we will just keep adding keys and cycles (...). There is a parallel between designing electronic commerce infrastructure today that uses weak cryptography (i.e. 40 or 56 bit keys) and, say, designing air traffic control systems in the '60s using two digit year fields. (...) Just because you can retire before it all blows up doesn't make it any less irresponsible." (Arnold G. Reinhold) The Chinese State Encryption Management Commission (SEMC) announced in March 2000 that only strong encryption tools will have to be registered in the future. Which sounds so nice on first sight, does not mean a lot in reality: any kind of useful encryption technique, like the The restrictions and prohibitions for cryptography are part of the states' wish to acquire more control - in the name of the battle against criminality, probably? Due to the emerging organized criminality the governments want to obtain more freedom of control over citizens. Organizations like the NSA appear as the leaders of such demands. What about civil rights or Human Rights? |
|
Timeline 00 - 1600 AD 3rd cent. Leiden papyrus: medical information gets enciphered to stop abuses 8th cent. - Abu 'Abd al-Rahman al-Khalil ibn Ahmad ibn 'Amr ibn Tammam al Farahidi al-Zadi al Yahmadi finds the solution for a Greek cryptogram by first of all finding out the plaintext behind the encryption, a method which never got out of date. Afterwards he writes a book on cryptography. - cipher alphabets for magicians are published 1250 the English monk Roger Bacon writes cipher-descriptions. At that time the art of enciphering was a popular game in monasteries 1379 Gabrieli di Lavinde develops the nomenclature-code for Clement VII (114); a code-system made out of ciphers and codes, which kept being irreplaceable until the 19th century 1392 (probably) the English poet Geoffrey Chaucer writes the book The Equatorie of the Planetis, which contains several passages in ciphers made out of letters, digits and symbols 1412 for the first time ciphers including different substitutions for each letter are developed (in Arabic) ~1467 invention of the "Captain Midnight Decoder Badge", the first polyalphabetic cipher (disk); the inventor, Leon Battista Alberti, also called the father of Western cryptography, uses his disk for enciphering and deciphering at the same time 15th/16th century nearly every state, especially England and France, has people working on en- and deciphering for them 1518 the first printed book on cryptology is written by the German monk Johannes Trithemius. He also changes the form of polyalphabetic cipher from disks into rectangulars 1533 the idea to take a pass-phrase as the key for polyalphabetic cipher is realized by Giovan Batista Belaso 1563 Giovanni Battista Porta suggests to use synonyms and misspellings to irritate cryptoanalysts 1585 Blaise de Vigenère has the idea to use former plaintexts or ciphertexts as new keys; he invents the 1587 Mary, Queen of Scots, is beheaded for the attempt to organize the murder of Queen Elisabeth I., whose agents find out about Mary's plans with the help of decryption 1588 the first book in shorthand is published |
|
Timeline 1900-1970 AD 1913 the wheel cipher gets re-invented as a strip 1917 - an AT&T-employee, Gilbert S. Vernam, invents a polyalphabetic cipher machine that works with random-keys 1918 the Germans start using the ADFGVX-system, that later gets later by the French Georges Painvin - Arthur Scherbius patents a ciphering machine and tries to sell it to the German Military, but is rejected 1919 Hugo Alexander Koch invents a rotor cipher machine 1921 the Hebern Electric Code, a company producing electro-mechanical cipher machines, is founded 1923 Arthur Scherbius founds an enterprise to construct and finally sell his late 1920's/30's more and more it is criminals who use cryptology for their purposes (e.g. for smuggling). Elizabeth Smith Friedman deciphers the codes of rum-smugglers during prohibition regularly 1929 Lester S. Hill publishes his book Cryptography in an Algebraic Alphabet, which contains enciphered parts 1933-1945 the Germans make the Enigma machine its cryptographic main-tool, which is broken by the Poles Marian Rejewski, Gordon Welchman and Alan Turing's team at Bletchley Park in England in 1939 1937 the Japanese invent their so called Purple machine with the help of Herbert O. Yardley. The machine works with telephone stepping relays. It is broken by a team of 1930's the Sigaba machine is invented in the USA, either by W.F. Friedman or his colleague Frank Rowlett - at the same time the British develop the Typex machine, similar to the German Enigma machine 1943 Colossus, a code breaking computer is put into action at Bletchley Park 1943-1980 the cryptographic Venona Project, done by the NSA, is taking place for a longer period than any other program of that type 1948 Shannon, one of the first modern cryptographers bringing mathematics into cryptography, publishes his book A Communications Theory of Secrecy Systems 1960's the Communications-Electronics Security Group (= CESG) is founded as a section of Government Communications Headquarters (= GCHQ) late 1960's the IBM Watson Research Lab develops the Lucifer cipher 1969 James Ellis develops a system of separate public-keys and private-keys |
|
Timeline BC ~ 1900 BC: Egyptian writers use non-standard 1500 an enciphered formula for the production of pottery is done in Mesopotamia parts of the Hebrew writing of Jeremiah's words are written down in " 4th century 487 the Spartans introduce the so called " 170 50-60 |
|
Timeline Cryptography - Introduction Besides oral conversations and written language many other ways of information-transport are known: like the bush telegraph, drums, smoke signals etc. Those methods are not cryptography, still they need en- and decoding, which means that the history of language, the history of communication and the history of cryptography are closely connected to each other The timeline gives an insight into the endless fight between enciphering and deciphering. The reasons for them can be found in public and private issues at the same time, though mostly connected to military maneuvers and/or political tasks. One of the most important researchers on Cryptography through the centuries is |
|
Examples of Mainly Corporate Funded Think Tanks: Cato Institute Founded in 1977 the Cato Institutes 1998 budget made up US$ 11 million. Its funding consists of corporate and private donations (especially from corporations and executives in the highly regulated industries of financial services, telecommunications and pharmaceuticals industries) and sales of publications. Catos corporate donors include tobacco firms: |
|
skytale The skytale (pronunciation: ski-ta-le) was a Spartan tool for encryption. It consisted of a piece of wood and a leather-strip. Any communicating party needed exactly the same size wooden stick. The secret message was written on the leather-strip that was wound around the wood, unwound again and sent to the recipient by a messenger. The recipient would rewound the leather and by doing this enciphering the message. |
|
Microsoft Corporation Founded by Bill Gates and Paul Allen and headquartered in Redmond, USA, Microsoft Corporation is today's world-leading developer of personal-computer software systems and applications. As MS-DOS, the first operating system released by Microsoft, before, Windows, its successor, has become the de-facto standard operating system for personal computer. According to critics and following a recent court ruling this is due to unfair competition. For more detailed information see the Encyclopaedia Britannica: |
|
David Kahn David Kahn can be considered one of the most important historians on cryptography. His book The Codebreakers. The comprehensive history of secret Communication from Ancient Times to the Internet, written in 1996 is supposed to be the most important work on the history of cryptography. |
|