How the Internet works

On the Internet, when you want to retrieve a document from another computer, you request a service from this computer. Your computer is the client, the computer on which the information you want to access is stored, is called the server. Therefore the Internet's architecture is called client-server architecture.

A common set of standards allows the exchange of data and commands independent from locations, time, and operating systems through the Internet. These standards are called communication protocols, or the Internet Protocol Suite, and are implemented in Internet software. Sometimes the Internet Protocol Suite is erroneously identified with TCP/IP (Transmission Control Protocol / Internet Protocol).

Any information to be transferred is broken down into pieces, so-called packets, and the Internet Protocol figures out how the data is supposed to get from A to B by passing through routers.

Each packet is "pushed" from router to router via gateways and might take a different route. It is not possible to determine in advance which ways these packets will take. At the receiving end the packets are checked and reassembled.

The technique of breaking down all messages and requests into packets has the advantage that a large data bundle (e.g. videos) sent by a single user cannot block a whole network, because the bandwidth needed is deployed on several packets sent on different routes. Detailed information about routing in the Internet can be obtained at http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html.

One of the Internet's (and of the Matrix's) beginnings was the ARPANet, whose design was intended to withstand any disruption, as for example in military attacks. The ARPANet was able to route data around damaged areas, so that the disruption would not impede communication. This design, whith its origin in strategic and military considerations, remained unchanged for the Internet. Yet the design of the ARPANet's design cannot be completely applied to the Internet.

Routing around depends on the location of the interruption and on the availability of intersecting points between networks. If, for example, an E-mail message is sent from Brussels to Athens and in Germany a channel is down, it will not affect access very much, the message will be routed around this damage, as long as a major Internet exchange is not affected. However, if access depends on a single backbone connection to the Internet and this connection is cut off, there is no way to route around.

In most parts of the world the Internet is therefore vulnerable to disruption. "The idea of the Internet as a highly distributed, redundant global communications system is a myth. Virtually all communications between countries take place through a very small number of bottlenecks, and the available bandwidth isn't that great," says Douglas Barnes. These bottlenecks are the network connections to neighboring countries. Many countries rely on a one single connection to the Net, and in some places, such as the Suez Canal, there is a concentration of fiber-optic cables of critical importance.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611791/100438659870
 
Who owns the Internet and who is in charge?

The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet.
The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g.
Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers.
Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily.
Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed.
For a detailed report on Internet governance, click here.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
 
1970s: Computer-Integrated Manufacturing (CIM)

Since the 1970s there had been a growing trend towards the use of computer programs in manufacturing companies. Especially functions related to design and production, but also business functions should be facilitated through the use of computers.

Accordingly the CAD/CAM technology, related to the use of computer systems for design and production, was developed. CAD (computer-aided design) was created to assist in the creation, modification, analysis, and optimization of design. CAM (computer-aided manufacturing) was designed to help with the planning, control, and management of production operations. CAD/CAM technology, since the 1970s, has been applied in many industries, including machined components, electronics products, equipment design and fabrication for chemical processing.

To enable a more comprehensive use of computers in firms the CIM (computer-integrated manufacturing) technology, which also includes applications concerning the business functions of companies, was created. CIM systems can handle order entry, cost accounting, customer billing and employee time records and payroll. The scope of CIM technology includes all activities that are concerned with production. Therefore in many ways CIM represents the highest level of automation in manufacturing.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659495
 
NSFNet

Developed under the auspices of the National Science Foundation (NSF), NSFnet served as the successor of the ARPAnet as the main network linking universities and research facilities until 1995, when it was replaced it with a commercial backbone network. Being research networks, ARPAnet and NSFnet served as testing grounds for future networks.

INDEXCARD, 1/3
 
File Transfer Protocol (FTP)

FTP enables the transfer of files (text, image, video, sound) to and from other remote computers connected to the Internet.

INDEXCARD, 2/3
 
CIM

To perform manufacturing firm's functions related to design and production the CAD/CAM technology, for computer-aided design and computer-aided manufacturing, was developed. Today it is widely recognized that the scope of computer applications must extend beyond design and production to include the business functions of the firm. The name given to this more comprehensive use of computers is computer-integrated manufacturing (CIM).

INDEXCARD, 3/3