The 19th Century: First Programmable Computing Devices Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early Therefore After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer. The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed. Of extraordinary importance for the evolution of digital computers and |
|
The third industiral revolution. Life as a product. Many years ago, the German philosopher The "third industrial revolution" is characterized by men becoming the "raw material" of their own industries. Product and producer, production and consumption, technology and nature are no longer meaningful pairs of opposites. The third is also the last revolution, as it is difficult to think of further revolutions when the distinction between subject and object becomes blurred. The world is becoming a Bestand and the human body and mind are no protected zones. They are something like the last safety zone of human being which is now itself becoming a basis for technological innovation. When the subject is weakened by its technical environment, the use of technical crooks for body and mind becomes an obvious "solution", even if the technically strengthened subject is strengthened at the cost of no longer being a "subject" in the traditional, metaphysical sense. Biological processes are dissected and subjected to technical control. This technical control is technical in two senses: it is not only control through technology but by ttechnology itsself, since it is not carried out by unaided human minds, but increasingly by intelligent machines. The point where this Andersian third industrial revolution reaches an unprecedented logic seems to lie within the realm of genetic engeneering. This example shows that the dissection of humanness - the decoding of genetic information - is tantamount to commodification. The purpose of the commercial genetic research projects is the use of genetic information as a resource for the development of new products, e.g. in pharmaceutics. Genetic products carry the promise of offering a solution to so-far uncurable diseases such as cancer, Alzeheimer, heart disorders, schizophrenia, and others, but they also open up the possibility of "breaking the chains of evolution", of actively manipulating the genetic structure of human beings and of "designing" healthy, long-living, beautiful, hard-working etc. beings. Here, the homo creator and the homo materia finally become indistinguishable and we are being to merge with our products in such a way that it "we" loses the remains of its meaning. Since 1990 research on human genetics is organised in the But exactly this patentising is of paramount importance in the emerging "post-industrial" society where knowledge becomes the most important resource. A patent is nothing else than a property title to a piece of "know-how", and an necessary consequence commodification. When life no longer simply a natural creation but a product, it, too, will be patented and becomes a commodity. Against the idea of the human genome as a public good, or an "open source", there is a growing competion on the part of private industry. Companies such as But the commodification of life is not limited ot the human species. Genetically altered animals and plants are also suffering the same fate, and in most industrialised nations it is now possible to patent genetically engeneered species and crops. The promises of the "Green Revolution" of the 1960s are now repeated in the genetic revolution. Genetic engeneering, so it is argued, will be able to breed animals and plants which resist disease and yield more "food" and will therfore help to tackle problems of undernutrition and starvation. Companies such as |
|
Network Information Center (NIC) Network information centers are organizations responsible for registering and maintaining the domain names on the |
|
Newsgroups Newsgroups are on-line discussion groups on the Usenet. Over 20,000 newsgroups exist, organized by subject into hierarchies. Each subject hierarchy is further broken down into subcategories. Covering an incredible wide area of interests and used intensively every day, they are an important part of the Internet. For more information, click here ( |
|