biotechnology summary

The fusion of flesh and machine is trend which, although inscribed in the history of modern technology from its beginnings, has reached a unprecedented momentum in recent years as a result of crucial advances in information technology, biology, and the development of global networks. Consequently, doubts are emerging concerning the viability of a distinct and definable human nature. Historical and social theories and concepts are being unhinged by the spread hybrids and by new forms of artificial life which are likely to trigger social changes escaping the grip of calculation. Attempts to defend an essential human nature against technical hybridisation, rather than strengthening the human subject, may have further blurred the question of historical subjectivity. Large amounts of money are invested into research and development of artifical biology, making some of the predictions of AI and robotics experts about radical and far reaching changes a matter of time.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611777/100438658143
 
The 19th Century: First Programmable Computing Devices

Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.

Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.

After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.

The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.

Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
 
Implant technology

Kevin Warwick at the University of Reading works on implant technologies which could enhance or modify functions of the limbs and the brain, or bring back functionalities lost, for example, in an accident or as a consequence of a stroke. Implants are also used for identification in "intelligent buildings" where they serve to control "personnel flows". However, the real potential of electronic implants seems to lie in the field of electronic drugs. The basics of the brain computer interface are already explored, and there are now efforts to electronically modify the function of the mind. Large software and IT companies are sponsoring this research which could result in the commercialisation of electronic drugs, functioning as anti-depressants, pain killers and the like. Evidently, the same technologies can also be used as narcotic drugs or to modify people's behaviour. The functioning of body and mind can be adapted to pre-defined principles and ideals, their autonomous existence reduced and subjected to direct outside control.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611777/100438658731
 
Human Genome Project

The Human Genome Project is an international colaborative research project that aims to map the human genome. It's goal is to idenitfy the 100,000 genes of the human DNA as well as to sequence the 3 billion chemical base pairs that make up the DNA. The HGP is designed on an open source basis, i.e. the information that is obtained and stored in databases should, in principle, be available to researchers and businesses all over the world. However, the HGP's work has been challenged by private businesses such as Celera whose objective is the private exploitation of genome information.

INDEXCARD, 1/2
 
Vandana Shiva

Vandana Shiva is the Director of the Research Foundation for Science, Technology and Ecology in New Delhi. She has been a tireless and one of the most original campaigners for ecological diversity, eco-feminism and against "official" development policies and commercial exploitation. Book publications include Ecofeminism (1993), Monocultures of the Mind (1993) and Biopiracy : The Plunder of Nature and Knowledge (1997

INDEXCARD, 2/2