| |
1950s: The Beginnings of Artificial Intelligence (AI) Research |


 |
With the development of the electronic computer in 1941 and the stored program computer in 1949 the conditions for research in artificial intelligence (AI) were given. Still, the observation of a link between human intelligence and machines was not widely observed until the late 1950s.
A discovery that influenced much of the early development of AI was made by Norbert Wiener. He was one of the first to theorize that all intelligent behavior was the result of feedback mechanisms. Mechanisms that could possibly be simulated by machines. A further step towards the development of modern AI was the creation of The Logic Theorist. Designed by Newell and Simon in 1955 it may be considered the first AI program.
The person who finally coined the term artificial intelligence and is regarded as the father of AI is John McCarthy. In 1956 he organized a conference "The Dartmouth summer research project on artificial intelligence" to draw the talent and expertise of others interested in machine intelligence for a month of brainstorming. In the following years AI research centers began forming at the Carnegie Mellon University as well as the Massachusetts Institute of Technology (MIT) and new challenges were faced: 1) the creation of systems that could efficiently solve problems by limiting the search and 2) the construction of systems that could learn by themselves.
One of the results of the intensified research in AI was a novel program called The General Problem Solver, developed by Newell and Simon in 1957 (the same people who had created The Logic Theorist). It was an extension of Wiener's feedback principle and capable of solving a greater extent of common sense problems. While more programs were developed a major breakthrough in AI history was the creation of the LISP (LISt Processing) language by John McCarthy in 1958. It was soon adopted by many AI researchers and is still in use today.

|
|
 |
|
Fiber-optic cable networks
Fiber-optic cable networks may become the dominant method for high-speed Internet connections. Since the first fiber-optic cable was laid across the Atlantic in 1988, the demand for faster Internet connections is growing, fuelled by the growing network traffic, partly due to increasing implementation of corporate networks spanning the globe and to the use of graphics-heavy contents on the World Wide Web.
Fiber-optic cables have not much more in common with copper wires than the capacity to transmit information. As copper wires, they can be terrestrial and submarine connections, but they allow much higher transmission rates. Copper wires allow 32 telephone calls at the same time, but fiber-optic cable can carry 40,000 calls at the same time. A capacity, Alexander Graham Bell might have not envisioned when he transmitted the first words - "Mr. Watson, come here. I want you" - over a copper wire.
Copper wires will not come out of use in the foreseeable future because of technologies as DSL that speed up access drastically. But with the technology to transmit signals at more than one wavelength on fiber-optic cables, there bandwidth is increasing, too.
For technical information from the Encyclopaedia Britannica on telecommunication cables, click here. For technical information from the Encyclopaedia Britannica focusing on fiber-optic cables, click here.
An entertaining report of the laying of the FLAG submarine cable, up to now the longest fiber-optic cable on earth, including detailed background information on the cable industry and its history, Neal Stephenson has written for Wired: Mother Earth Mother Board. Click here for reading.
Susan Dumett has written a short history of undersea cables for Pretext magazine, Evolution of a Wired World. Click here for reading.
A timeline history of submarine cables and a detailed list of seemingly all submarine cables of the world, operational, planned and out of service, can be found on the Web site of the International Cable Protection Committee.
For maps of fiber-optic cable networks see the website of Kessler Marketing Intelligence, Inc.
http://www.britannica.com/bcom/eb/article/4/0...
http://www.britannica.com/bcom/eb/article/4/0...
http://www.wired.com/wired/archive/4.12/ffgla...
http://www.pretext.com/mar98/features/story3....
|
|
|