|
1940s - Early 1950s: First Generation Computers Probably the most important contributor concerning the theoretical basis for the digital computers that were developed in the 1940s was The onset of the Second World War led to an increased funding for computer projects, which hastened technical progress, as governments sought to develop computers to exploit their potential strategic importance. By 1941 the German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. Two years later the British completed a secret code-breaking computer called Colossus to Also spurred by the war the Electronic Numerical Integrator and Computer (ENIAC), a general-purpose computer, was produced by a partnership between the U.S. government and the University of Pennsylvania (1943). Consisting of 18.000 Concepts in computer design that remained central to computer engineering for the next 40 years were developed by the Hungarian-American mathematician Characteristic for first generation computers was the fact, that instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different |
|
|
|
General Electric GE is a major American corporation and one of the largest and most diversified corporations in the world. Its products include electrical and electronic equipment, plastics, aircraft engines, medical imaging equipment, and financial services. The company was incorporated in 1892, and in 1986 GE purchased the RCA Corporation including the RCA-owned television network, the National Broadcasting Company, Inc. In 1987, however, GE sold RCA's consumer electronics division to Thomson SA, a state-owned French firm, and purchased Thomson's medical technology division. In 1989 GE agreed to combine its European business interests in appliances, medical systems, electrical distribution, and power systems with the unrelated British corporation General Electric Company. Headquarters are in Fairfield, Conn., U.S. |
|
|
|
Alan Turing b. June 23, 1912, London, England d. June 7, 1954, Wilmslow, Cheshire English mathematician and logician who pioneered in the field of computer theory and who contributed important logical analyses of computer processes. Many mathematicians in the first decades of the 20th century had attempted to eliminate all possible error from mathematics by establishing a formal, or purely algorithmic, procedure for establishing truth. The mathematician Kurt Gödel threw up an obstacle to this effort with his incompleteness theorem. Turing was motivated by Gödel's work to seek an algorithmic method of determining whether any given propositions were undecidable, with the ultimate goal of eliminating them from mathematics. Instead, he proved in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem [Decision Problem]" (1936) that there cannot exist any such universal method of determination and, hence, that mathematics will always contain undecidable propositions. During World War II he served with the Government Code and Cypher School, at Bletchley, Buckinghamshire, where he played a significant role in breaking the codes of the German " |
|
|