|
Face recognition In order to be able to recognize a person, one commonly looks at this persons face, for it is there where the visual features which distinguish one person from another are concentrated. Eyes in particular seem to tell a story not only about who somebody is, but also about how that persons feel, where his / her attention is directed, etc. People who do not want to show who they are or what is going on inside of them must mask themselves. Consequently, face recognition is a kind of electronic unmasking. "Real" face-to-face communication is a two-way process. Looking at somebody's face means exposing ones own face and allowing the other to look at oneself. It is a mutual process which is only suspended in extraordinary and voyeuristic situations. Looking at somebody without being looked at places the person who is visually exposed in a vulnerable position vis-à-vis the watcher. In face recognition this extraordinary situation is normal. Looking at the machine, you only see yourself looking at the machine. Face biometrics are extracted anonymously and painlessly by a mask without a face. Therefore the resistance against the mass appropriation of biometrical data through surveillance cameras is confronted with particular difficulties. The surveillance structure is largely invisible, it is not evident what the function of a particular camera is, nor whether it is connected to a face recognition system. In a protest action against the face recognition specialist According to |
|
|
|
Iris recognition Iris recognition relies upon the fact that every individuals retina has a unique structure. The iris landscape is composed of a corona, crypts, filaments, freckles, pits radial furrows and striatations. Iris scanning is considered a particularly accurate identification technology because the characteristics of the iris do not change during a persons lifetime, and because there are several hundred variables in an iris which can be measured. In addition, iris scanning is fast: it does not take longer than one or two seconds. These are characteristics which have made iris scanning an attractive technology for high-security applications such as prison surveillance. Iris technology is also used for online identification where it can substitute identification by password. As in other biometric technologies, the use of iris scanning for the protection of privacy is a two-edged sword. The prevention of identity theft applies horizontally but not vertically, i.e. in so far as the data retrieval that accompanies identification and the data body which is created in the process has nothing to do with identity theft. |
|
|
|
1940s - Early 1950s: First Generation Computers Probably the most important contributor concerning the theoretical basis for the digital computers that were developed in the 1940s was The onset of the Second World War led to an increased funding for computer projects, which hastened technical progress, as governments sought to develop computers to exploit their potential strategic importance. By 1941 the German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. Two years later the British completed a secret code-breaking computer called Colossus to Also spurred by the war the Electronic Numerical Integrator and Computer (ENIAC), a general-purpose computer, was produced by a partnership between the U.S. government and the University of Pennsylvania (1943). Consisting of 18.000 Concepts in computer design that remained central to computer engineering for the next 40 years were developed by the Hungarian-American mathematician Characteristic for first generation computers was the fact, that instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different |
|
|
|
Harold. D. Lasswell Harold. D. Lasswell (* 1902) studied at the London School of Economics. He then became a professor of social sciences at different Universities, like the University of Chicago, Columbia University, and Yale University. He also was a consultant for several governments. One of Lasswell's many famous works was Propaganda Technique in World War. In this he defines propaganda. He also discussed major objectives of propaganda, like to mobilize hatred against the enemy, to preserve the friendship of allies, to procure the co-operation of neutrals and to demoralize the enemy. |
|
|
|
Polybius Polybius was one of the greatest historians of the ancient Greek. he lived from 200-118 BC. see: |
|
|
|
Kessler Marketing Intelligence (KMI) KMI is the leading source for information on fiber-optics markets. It offers market research, strategic analysis and product planning services to the opto-electronics and communications industries. KMI tracks the worldwide fiber-optic cable system and sells the findings to the industry. KMI says that every fiber-optics corporation with a need for strategic market planning is a subscriber to their services. |
|
|
|
Viacom One of the largest and foremost communications and media conglomerates in the world. Founded in 1971, the present form of the corporation dates from 1994 when Viacom Inc., which owned radio and television stations and cable television programming services and systems, acquired the entertainment and publishing giant Paramount Communications Inc. and then merged with the video and music retailer Blockbuster Entertainment Corp. Headquarters are in New York City. |
|
|