Governmental Regulations

The new U.S. regulations are based on the Wassenaar Arrangement Revision of 1998, where exports without license of 56 bit DES and similar products are allowed after a technical review, just like encryption commodities and software with key lengths of 64-bits or less which meet the mass market requirements.
For more information see:
http://www.wassenaar.org/

Seven states stay excluded from the new freedom. These are states like Libya, Iraq, Iran, North Korea and Cuba, altogether states seen as terrorist supporting. No encryption tools may be exported into those countries.

This is, what happened in the USA, whereas in Germany the issue of a cryptography-law is still on the agenda. Until now, in Germany, everyone can decide by her-/himself, whether she/he wants to encrypt electronic messages or not. Some organizations fear that this could get changed soon. Therefore an urgent action was organized in February 2000 to demonstrate the government that people want the freedom to decide on their own. One governmental argument is that only very few people actually use cryptography. Therefore the urgent action is organized as a campaign for using it more frequently.

For more information on this see:
http://www.heise.de/ct/97/04/032/
http://www.fitug.de/ulf/krypto/verbot.html#welt

Other European countries have more liberate laws on cryptography, like France. Austria doesn't have any restrictions at all, probably because of a governmental lack of interest more than accepting freedom.
The (former) restrictions in the bigger countries influenced and hindered developments for safer key-systems, e.g. the key-length was held down extraordinarily.

"Due to the suspicious nature of crypto users I have a feeling DES will be with us forever, we will just keep adding keys and cycles (...). There is a parallel between designing electronic commerce infrastructure today that uses weak cryptography (i.e. 40 or 56 bit keys) and, say, designing air traffic control systems in the '60s using two digit year fields. (...) Just because you can retire before it all blows up doesn't make it any less irresponsible."
(Arnold G. Reinhold)


The Chinese State Encryption Management Commission (SEMC) announced in March 2000 that only strong encryption tools will have to be registered in the future. Which sounds so nice on first sight, does not mean a lot in reality: any kind of useful encryption technique, like the PGP, stay under governmental control.

The restrictions and prohibitions for cryptography are part of the states' wish to acquire more control - in the name of the battle against criminality, probably?
Due to the emerging organized criminality the governments want to obtain more freedom of control over citizens. Organizations like the NSA appear as the leaders of such demands.
What about civil rights or Human Rights?

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611776/100438659135
 
1913: Henry Ford and the Assembly Line

Realizing that he'd need to lower costs Henry Ford (Ford Motor Company) was inspired to create a more efficient way to produce his cars. Looking at other industries he and his team found four principles, which furthered their goal: interchangeable parts, continuous flow, division of labor, and reducing wasted effort.

The use of interchangeable parts meant making the individual pieces of the car the same every time. Therefore the machines had to be improved, but once they were adjusted, they could be operated by a low-skilled laborer. To reduce the time workers spent moving around Ford refined the flow of work in the manner that as one task was finished another began, with minimum time spent in set-up. Furthermore he divided the labor by breaking the assembly of the legendary Model T in 84 distinct steps. Frederick Taylor, the creator of "scientific management" was consulted to do time and motion studies to determine the exact speed at which the work should proceed and the exact motions workers should use to accomplish their tasks.

Putting all those findings together in 1913 Ford installed the first moving assembly line that was ever used for large-scale manufacturing. His cars could then be produced at a record-breaking rate, which meant that he could lower the price, but still make a good profit by selling more cars. For the first time work processes were largely automated by machinery.

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659335
 
Satellites

Communications satellites are relay stations for radio signals and provide reliable and distance-independent high-speed connections even at remote locations without high-bandwidth infrastructure.

On point-to-point transmission, the transmission method originally employed on, satellites face increasing competition from fiber optic cables, so point-to-multipoint transmission increasingly becomes the ruling satellite technology. Point-to-multipoint transmission enables the quick implementation of private networks consisting of very small aperture terminals (VSAT). Such networks are independent and make mobile access possible.

In the future, satellites will become stronger, cheaper and their orbits will be lower; their services might become as common as satellite TV is today.

For more information about satellites, see How Satellites Work (http://octopus.gma.org/surfing/satellites) and the Tech Museum's satellite site (http://www.thetech.org/hyper/satellite).

http://www.whatis.com/vsat.htm
http://octopus.gma.org/surfing/satellites
INDEXCARD, 1/2
 
MIT

The MIT (Massachusetts Institute of Technology) is a privately controlled coeducational institution of higher learning famous for its scientific and technological training and research. It was chartered by the state of Massachusetts in 1861 and became a land-grant college in 1863. During the 1930s and 1940s the institute evolved from a well-regarded technical school into an internationally known center for scientific and technical research. In the days of the Great Depression, its faculty established prominent research centers in a number of fields, most notably analog computing (led by Vannevar Bush) and aeronautics (led by Charles Stark Draper). During World War II, MIT administered the Radiation Laboratory, which became the nation's leading center for radar research and development, as well as other military laboratories. After the war, MIT continued to maintain strong ties with military and corporate patrons, who supported basic and applied research in the physical sciences, computing, aerospace, and engineering. MIT has numerous research centers and laboratories. Among its facilities are a nuclear reactor, a computation center, geophysical and astrophysical observatories, a linear accelerator, a space research center, supersonic wind tunnels, an artificial intelligence laboratory, a center for cognitive science, and an international studies center. MIT's library system is extensive and includes a number of specialized libraries; there are also several museums.

INDEXCARD, 2/2